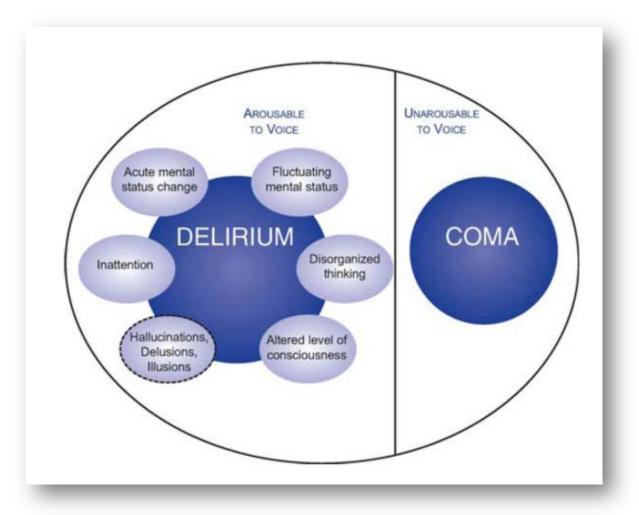
Delirium de Réanimation

Tarek Sharshar

t.sharshar@ghu-paris.fr


Encephalopathy

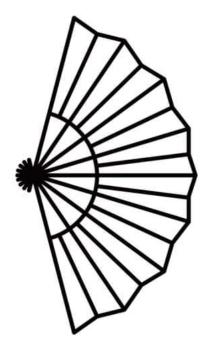
Disorder of consciousness

ComaDelirium

Abnormal Electroencephalogram

Encephalopathy

Complete the neurological examination


- Focal neurological sign
- Abnormal movements (seizures...)
- Neck stifness
- Flapping (delirium)
- Brainstem reflexes (coma)
- > Dysautonomia

General examination

- Vital signs
- Risk factors for encephalopathy
- Seek for the medical cause

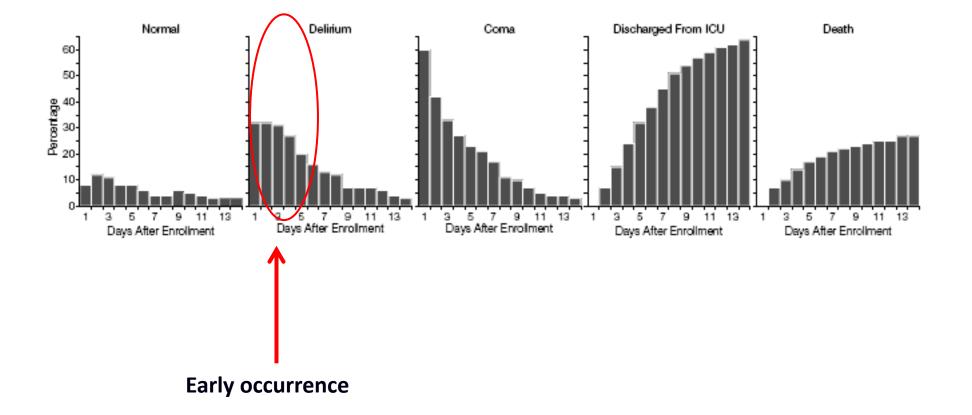
Consequence of medical condition, substance intoxication or withdrawal

Subtypes of delirium

- Hyperactive delirium: agitation, agression, hallucination and disorientation
- Hypoactive delirium: prostration, motor slowness apathy, lethargia and withdrawal from interactions
- Mixed delirium: fluctuation between hyperactive and hypoactive subtypes

Hypoactive delirium

> Hypoactive delirium (HD) is **the most frequent subtype** of delirium

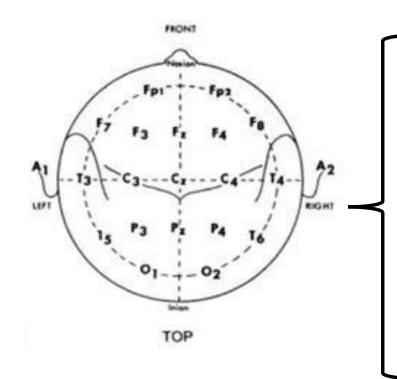

HD can be easily misdiagnosed, necessity of routine detection by validated delirum scales

>Age, dementia and severity of critical illness increase the risk of HD

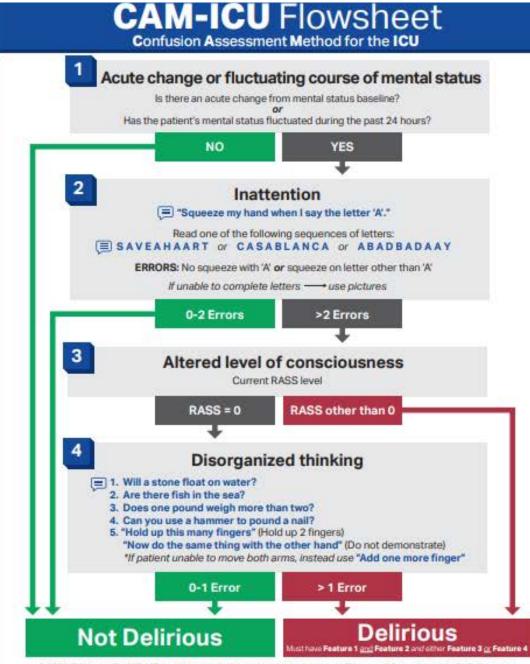
HD is associated with increased mortality and impaired cognitive or functional outcomes

>No specific treatment than those proposed in delirium

Time distribution



<u>Ely et al – JAMA - 2004</u>


EEG features

- Most frequent EEG features: Generalized slowing with increased theta and delta activity
- Marker of severe encephalopathy: Periodic discharges, triphasic waves, burst suppression, electrographic seizures less frequent but markers of severity
- Delirium is characterized by decreased variability in quantitative EEG and impaired connectivity.
- EEG correlates of delirium: Electrographic seizure more frequently seen in ICU patients with delirium
- Prognostic predictors: Absence of reactivity ++++
- > **Delirium predictor**: Generalised slowing and absent reactivity

When doing an EEG in delirium?

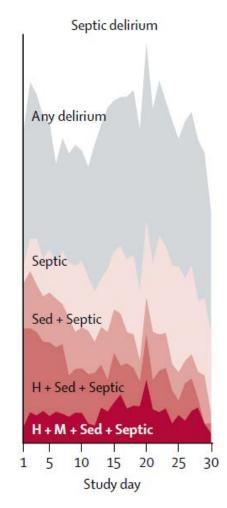
- ► No clear recommendation
 - Standard versus continuous EEG?
 - Abnormal movement suggesting seizure
 - Pro-epileptogenic factors (neurotoxic drugs, withdrawal...)
 - Persistent encephalopathy
 - Treating electrographic seizure (Yes?)
 - Evaluating risk of delirium
 - Prognostic evaluation

© 2002, E. Wesley Ely, MD, MPH and Vanderbilt University, all rights reserved. For more information, visit ICUDelinium.org

Kurtz et al – Current opinion - 2024

ICU Delirium Screening Checklist

The	Intensive	Care	Delirium	Screening	Checklist
-----	-----------	------	----------	-----------	-----------


Checklist Item	Description					
Altered level of consciousr	ness ^a					
A	No response					
В	Response to intense and repeated stimulation					
С	Response to mild or moderate stimulation					
D	Normal wakefulness					
E	Exaggerated response to normal stimulation					
Inattentiveness	Difficulty following instructions or easily distracted					
Disorientation	To time, place, or person					
Hallucination-delusion- psychosis	Clinical manifestation or suggestive behavior					
Psychomotor agitation or retardation	Agitation requiring use of drugs or restraints, or slowing					
Inappropriate speech or mood	Related to events or situation, or incoherent speech					
Sleep/wake cycle disturbance	Sleeping <4 hours/day, waking at night, sleeping all day					
Symptom fluctuation	Symptoms above occurring intermittently					
Total score	0 to 8					

Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study

	Prevalence among participants (N=1040)	Frequency among delirium days (N=4187)	Duration among participants affected
Any delirium	740 (71%)	4187 (100%)	4 (2-7)
Нурохіс	579 (56%)	2247 (54%)	3 (1-5)
Septic	534 (51%)	2405 (57%)	3 (2-6)
Sedative-associated	663 (64%)	2634 (63%)	3 (1-5)
Metabolic	260 (25%)	1149 (27%)	3 (1-6)
Unclassified	224 (22%)	591 (14%)	2 (1-3)

Data are n (%) or median (IQR).

Table 2: Prevalence and duration of delirium phenotypes

<u>Girard et al – LRM - 2018</u>

Predeleric score

Formula for PRE-DELIRIC model

Risk of delirium = 1/(1+exp-(-6.31

+ 0.04 × age

+ 0.06 × APACHE-II score

+ 0 for non-coma or 0.55 for drug induced coma or 2.70 for miscellaneous coma or 2.84 for combination coma

+ 0 for surgical patients or 0.31 for medical patients or 1.13 for trauma patients or 1.38 for neurology/neurosurgical patients

+ 1.05 for infection

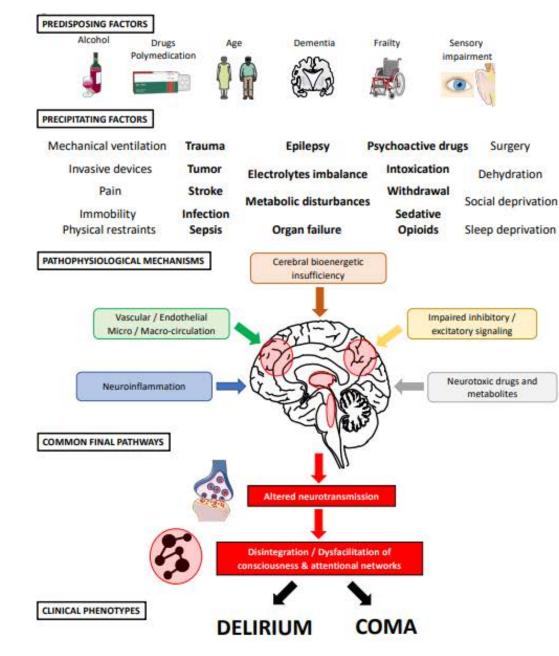
+ 0.29 for metabolic acidosis

+ 0 for no morphine use or 0.41 for 0.01-7.1 mg/24 h morphine use or 0.13 for 7.2-18.6 mg/24 h morphine use or 0.51 for >18.6 mg/24 h morphine use

+ 1.39 for use of sedatives

+ 0.03 × urea concentration (mmol/L)

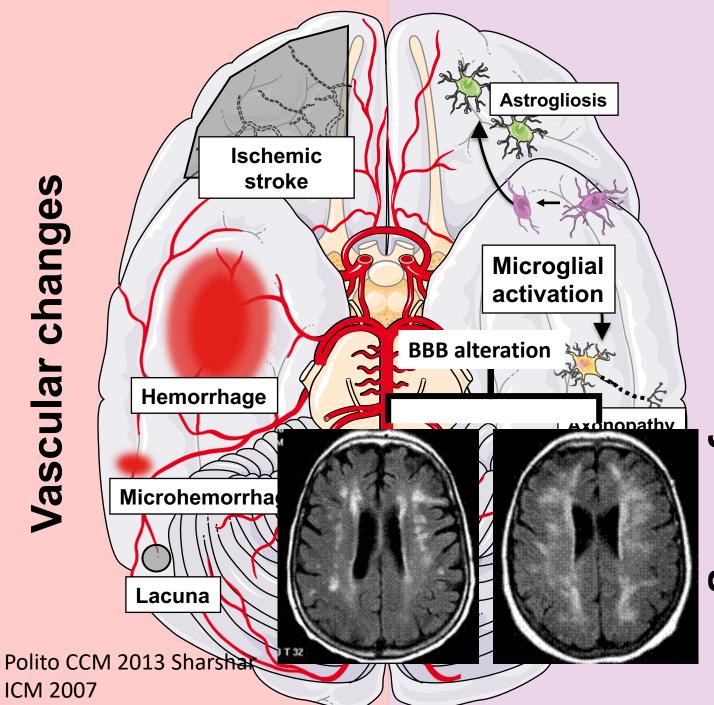
+ 0.40 for urgent admission))


The scoring system's intercept is expressed as -6.31; the other numbers represent the shrunken regression coefficients (weight) of each risk factor.

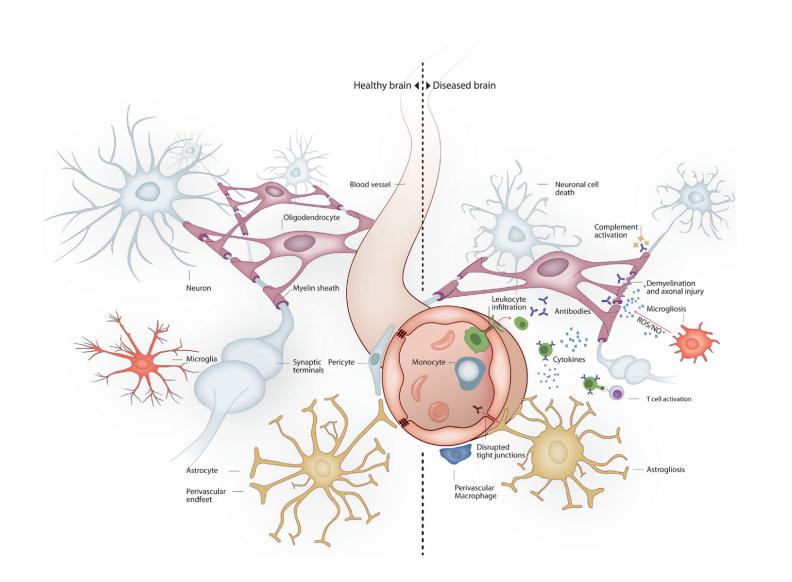
Van den Bogaard et al – BMJ - 2012

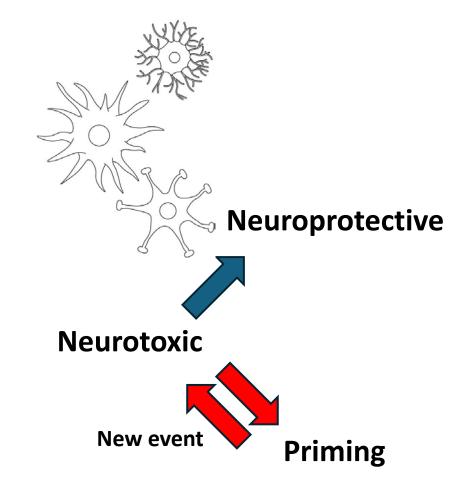
Causes

- 1. Primary CNS disorders
- 2. Epilepsia
- 3. Organ failure (Renal, Liver, Heart, Respiratory..)
- 4. Metabolic disturbances/ Dehydratation
- 5. Hypoxemia/acido-basis disturbances
- 6. Drugs side-effects (AB etc..)
- 7. Withdrawal (druges, alcohol...)
- 8. Deficiencies (Vitamines)
- 9. Endocrinopathies
- 10. Infection
- 11. Pain/Retention/Discomfort/Sleep deprivation/anxiety...

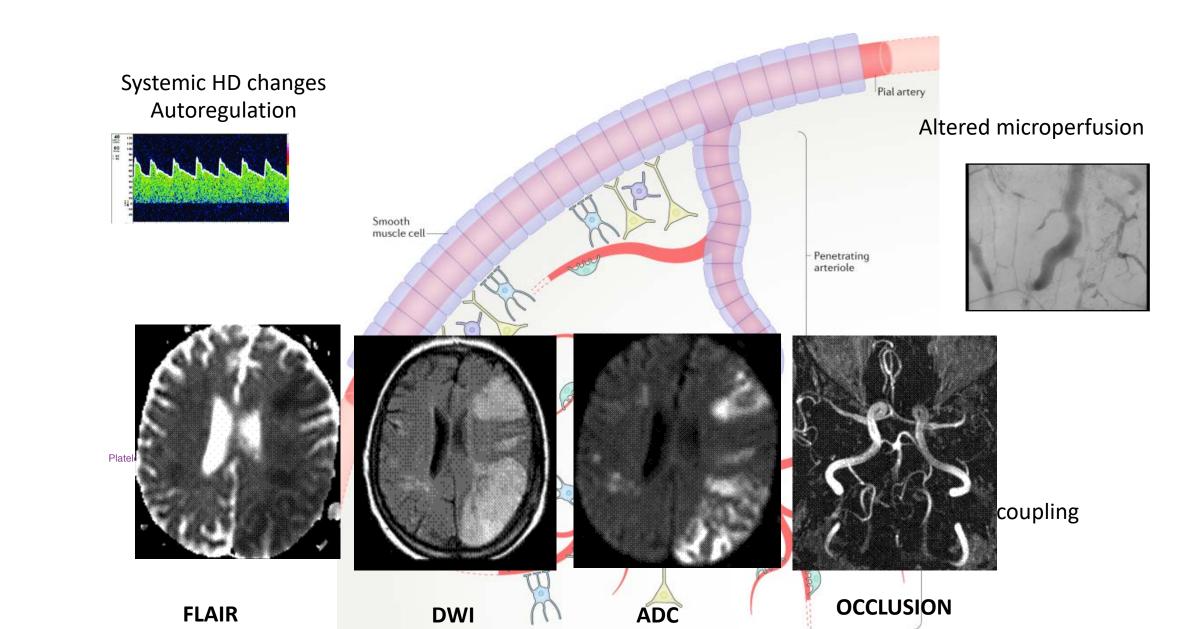

Brain Imaging EEG CSF Standard biological tests

<u>Kurtz et al – Current opinion - 2024</u>


pathophysiology and **Risk factors**

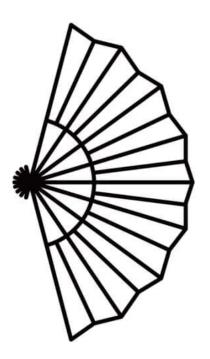

Ш SA of Pathophysiology

Neuroinflammatory changes


Neuroinflammatory process

No biomarker of microglial immunophenotype

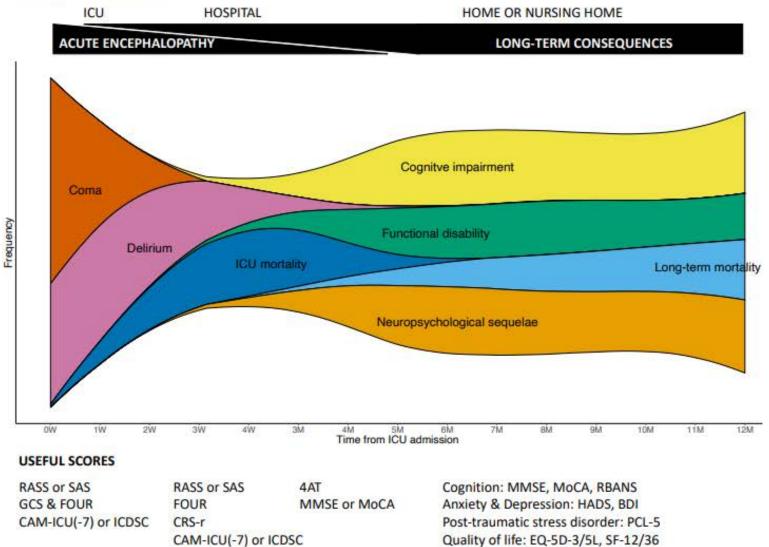
Ischemic process in SAE



When doing a brain imaging?

No clear recommendation
 Focal neurological signs
 Abnormal movements
 No obvious causes
 Persistent delirium

Outcomes



- Increased Mortality: ICU, in-Hospital, at one-year
- Long-term cognitive impairment: proportional relationship with delirium duration
- Long-term psychological disorders: delirium is a risk factor of PTSD

A causal relationship?

PATIENTS' TRAJECTORIES

Quality of life: EQ-5D-3/5L, SF-12/36 Functional independance: ADL/IADL

Kurtz et al – Current opinion - 2024

ABCDEF Bundle

Assess, prevent & manage pain

- CPOT or BPS to assess pain, insure adequate pain control
- · Use of regional anesthesia and nonopioid adjuncts
- Analgesia-based sedation techniques with fentanyl

Both SAT & SBT

- Daily linked SAT and SBT
- · Multidisciplinary coordination of care
- Faster liberation from MV

Choice of sedation

- · Targeted light sedation when sedation necessary
- Avoidance of benzodiazepines
- Dexmedetomidine if high delirium risk, cardiac surgery, MV weaning

Delirium monitoring & management

- Routine CAM-ICU or ICDSC assessments
- Nonpharmacologic intervention, including sleep hygiene
- Dexmedetomidine or antipsychotic if hyperactive symptoms

1.0	-	i
		ł
	r -	
	-	ł

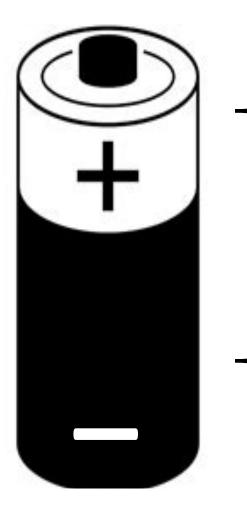
Early mobility & exercise

- · Physical and occupational therapy assessment
- · Coordinate activity with SAT or periods of no sedation
- Progress through range of motion, sitting, standing, walking, ADLs

	and the second	
-		

Family engagement & empowerment

- · Reorientation, provision of emotional and verbal support
- · Cognitive stimulation, participation in mobilization
- · Participation in multidisciplinary rounds


Early Mobilization in ICU

No effect Good effect Not tested

Intervention	Mortality	Prevention of delirium	Duration of delirium	Duration of MV/LOS	Long-term psychological disorders	Long-term cognitive disorders	Long-term Quality of Life
ICU/RCT/2009			Reduction	Reduction			
Surgical ICU/RCT/2016	Trend for hopital mortality		Reduction	Reduction of IOS			
ICU/RCT/2023		Yes	Reduction	Reduction		Yes	Trend to better QoL (physical)
ICU/RCT/2024							

Non-pharmacological intervention in ICU

- Family participation
- ABCDEF bundle
- Delirium early detection protocol
- Multicomponent
- Light noise blocking (improves sleep)
- Bright light therapy
- Architectural intervention
- Flexible family visitation (Rosa et al JAMA 2029)
- Massage
- Quiet time protocol
- Cognitive stimulation

Effect of Haloperidol on Survival Among Critically III Adults With a High Risk of Delirium The REDUCE Randomized Clinical Trial

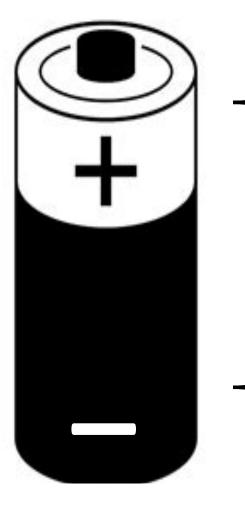
	2-mg Haloperidol (n = 732)	Placebo (n = 707)
Primary analysis, days alive at 28 days, median (IQR)	28 (28 to 28)	28 (28 to 28)
Survival, No. (%)		
28 d	610 (83.3)	585 (82.7)
90 d	579 (79.1)	556 (78.6)
28-Day end points		
Incidence of delirium, No. (%)	244 (33.3)	233 (33.0)
No. of delirium- and coma-free, median (IQR), d ^b	26 (17 to 28)	26 (19 to 28)
No. of delirium-free, median (IQR), d ^b	28 (22 to 28)	28 (23 to 28)
No. of coma-free, median (IQR), d ^b	27 (22 to 28)	27 (23 to 28)
No. of days to occurrence of delirium, median (IQR) ^b	3 (2 to 6)	3 (2 to 6)
Duration of mechanical ventilation, median (IQR), d	2 (0 to 6)	2 (0 to 5)

Van den Boogaard et al – JAMA - 2018

Haloperidol for treating delirium

Intervention	Mortality	Duration of delirium	Duration of MV/LOS	Long-term psychological disorders	Long-term cognitive disorders	Long-term Quality of Life
ICU/RCT/2018	ICU/hospital/ 3-months					
ICU/RCT/2023 AID-ICU	3-months					
ICU/RCT/2023 AID-ICU (Pre-planned Bayesian)	Hospital	Coma & delirum	Days alive without MV			
ICU/RCT/2023 AID-ICU (ancillary)	1-year					
ICU/RCT/2023 Euridice			Trends to reduce LOS			
ICU/RCT/2024 MIND-USA	3 and 12- months					

Dose: 2,5 mg/8h in average
Side-effects (ECG)
Contraindicated in catatonia


- Motoric immobility (catalepsy, waxy flexibility, stupor)
- Excessive motor activity (purposeless, not influenced by external stimuli)
- Extreme negativism (rigid posture, resistance to instructions, gegenhalten, mutism)
- Peculiarities of voluntary movement (grimacing, bizarre postures, stereotyped movements)
- Echolalia or echopraxia

Dexmedetomidine for preventing or treating delirium

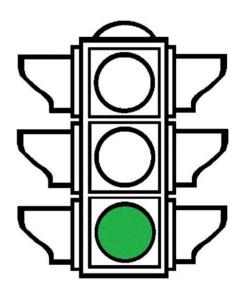
Intervention	Mortality	Delirium prevention	Delirium duration	Duration of MV/LOS
ICU/RCT/2016 SPICE III	ICU/hospital/ 3- months			
METANALYSIS				
MIDEX&PRODEX	Hospital		More cooperative with Dex	Days alive without MV
DEX vs MID	1-year			
DEX-LORAZEPAM				
DEX-SEPSIS				
DEX-AGITATED DELIRIUM				MV
DEX-ELDERLY-CARDIAC SURGERY				
	No effect	Good effe	ct Not tes	ted

Other drugs for preventing or treating delirium

- Minocycline (to b confirmed)
 - ➤ Thiamine

Statins

➢ Rivastigmine


Melatonin

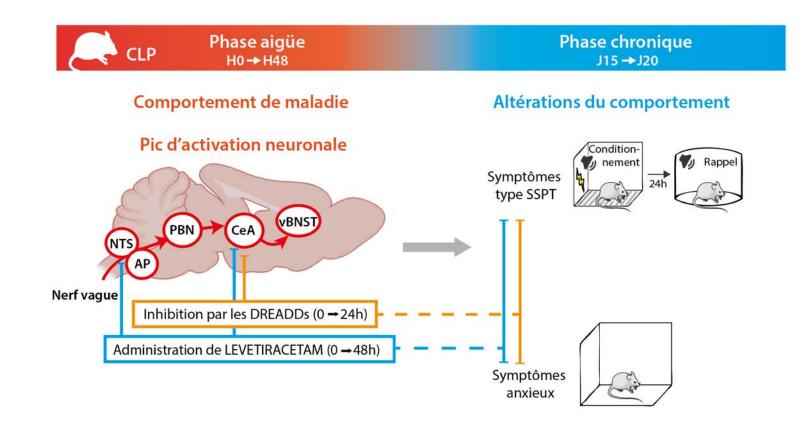
- Reducing sedation
- > BZD (Dex?) for alcoohol withdrawal

The KISS trial

Kang et al – Aust Crit Care - 2023

Control of the risk factors
 Treatment of the cause
 Think of alternative diagnosis

Conclusions


- A frequent and severe complication of critical illness and ICU management
- Multifactorial
- Associated with short and long-term bad outcomes, especially hypoactive delirum
- >To be detected routinely with validated scales
- Prevention based on reducing risk factors (sedation and immobility).
- Etiological treatment +++
- Interest of Dexmedetomitine for helping discontinuation of sedation.
- Antipsychotic drugs if only agitation (or hallucination) but contra-indicated in catatonia (a differential diagnosis of delirium)

Quelques réflexions....

Dysfonction amygdalienne

ANXIETY (Panicu study)

STAI

Respiratory failure and delirium were the two most ferquent organ failure

Occurrence of a new organ failure

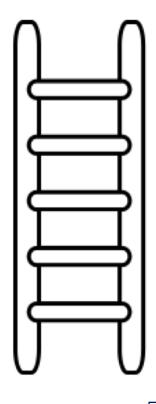
J1 J	2 J3	J4	J5	J6	J7	
 Anxiety	TABLE 4. Adjusted Questionnaire (Fi					State
ssessment	Variables			c	DR (95% CI)	P
	Model adjusted for SAP	S II and SOFA at admissi	on			
	STAI-State ≥ 40			1.9	4 (1.18–3.18)	0.009
→ ≥40	SAPS II (per point val	ue)		1.0	03 (1.01–1.05)	0.005
	SOFA score (per poin	t value)		1.2	1 (1.05–1.39)	0.009
	Model adjusted for SAP	S II and SOFA at admissi	on and dyspnea varia	ablesª		
	STAI-State ≥ 40			1.7	2 (1.03–2.87)	0.038
	SAPS II (per point val	SAPS II (per point value)			3 (1.01–1.05)	0.007
\mathbf{N}	SOFA score (per poin	t value)		1.2	2 (1.05-1.40)	0.007
\mathbf{X}	Dyspnea Visual Analo	gic Scale (per point value	2)	1.0	6 (0.98–1.15)	0.13
	Paco ₂ ≥ 45 mm Hg			1.2	7 (0.69–2.36)	0.45
▶ <40	Subgroup analysis accor	rding to SOFA value at ac	lmission, adjusted fo	or SAPS II		
	STAI-State \ge 40 for p	atients without organ dys	function at admissio	on 2.0	2 (1.01–4.06)	0.048
	STAI-State \ge 40 for p	atients with organ dysfur	oction at admission	2.1	3 (1.03–4.39)	0.040
	Interaction test					0.99

OR = odds ratio, SAPS = Simplified Acute Physiology Score, SOFA = Sequential Organ Failure Assessment, STAI-State = State-Trait Anxiety Inventory State questionnaire (from 20 to 80).

^aPost hoc analysis.

C-index for the model adjusted for SAPS II and SOFA at admission: 0.698.

C-index for the model with SAPS II and SOFA only: 0.676.


C-index difference, 0.02; bootstrap 95% Cl, 0.0002-0.070; p 0.048.

Continuous net reclassification index, 0.297; bootstrap 95% Cl, 0.081-0.516; p 0.005.

C-index for the model adjusted for SAPS II and SOFA at admission and dyspnea variables: 0.703.

Deep sedation

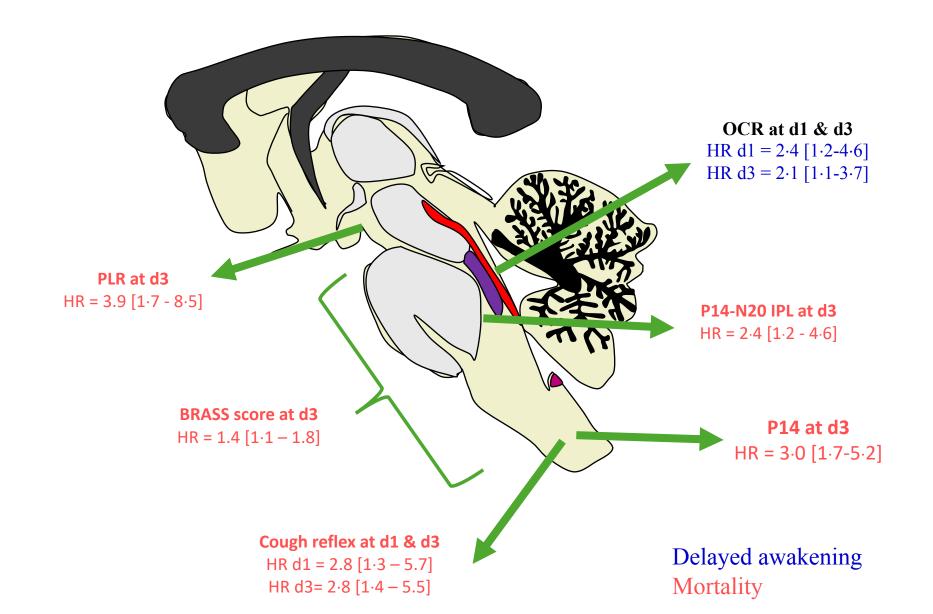
It is required in more than 30% of critically ill patients over the first 7 days

It is required in most severe critically ill patients who are at risk of neurological deterioration

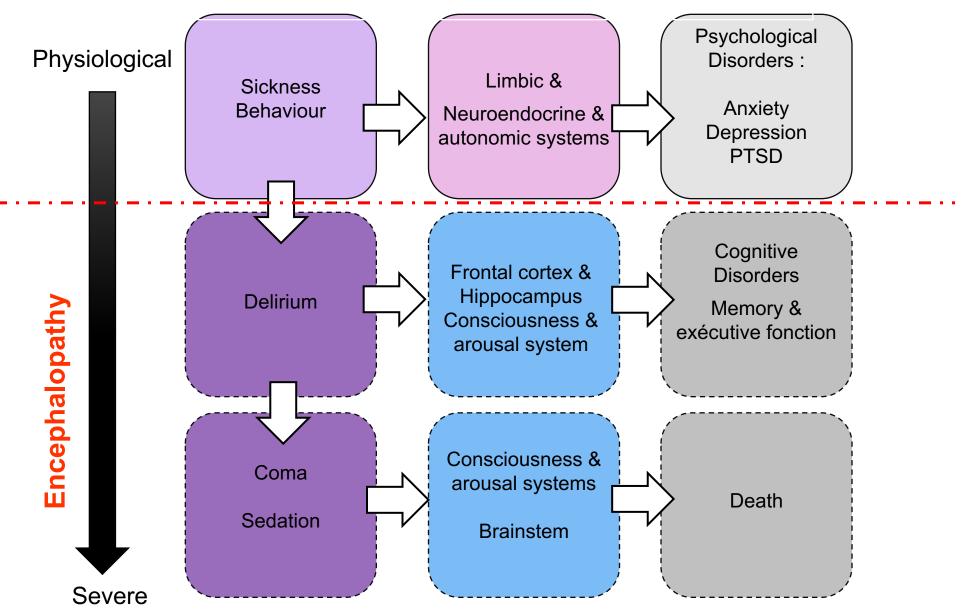
Deep sedation can mask neurological deterioration

>It is associated with **increased mortality**

It is associated with delayed awakening, delirium and long-term psycho-cognitive disorders


ICU-mortality is associated
 absent cough reflex,
 heteregenous pattern of abolition of brainstem reflexes
 increased SSEP intracranial interlatency are associated with
 altered mental status after discontinuation of sedation is related
 early abolition of oculocephalic reflex

ProReTro multicenter observational study

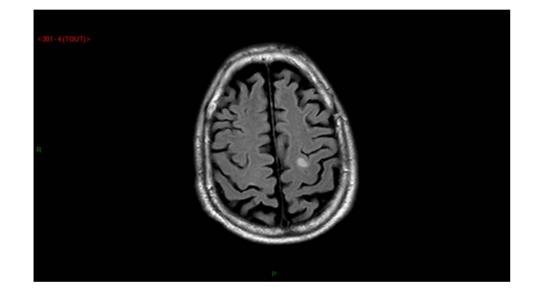

Multimodal assessment at day 3 of deep sedation 261 patients (brain injured: 139 (53%) Primary outcome: medullar SSEP P14> 16 ms associated with day 28 mortality

					Strate - P14_seuilsup16=no - P14_seuilsup16=yes
P14 latency at Day 3	t Survivor (n=211)	Dead (n=53)		1.00-	
< 16 ms	77%	49%	val	0.75-	and and a second
> 16 ms	23%	51%	Pr Overall survival	0.50 -	
			Pr Ove	0.25-	p < 0.0001
	Hazard ratio	IC	р	0.00	
P14 latency 16 ms	2.98	[1.71-5.18]	0.0001		0 4 8 12 16 20 24 28 Days after J0
SAPS-II	1.01	[0.99-1.03]	0.41		
GCS at admission	1.02	[0.95-1.09]	0.59		
Brain injury	0.64	[0.31-1.30]	0.22		

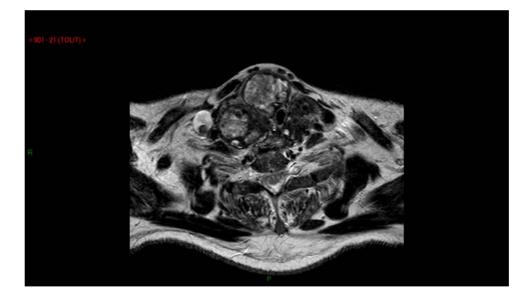
ProReTro multicenter observational study

The Paradigm

Clinical case


A 55 years old man was hospitalised for a septic shock. Blood culture were positive to *Staphylococcus aureus* and CSF analysis showed an aseptic meningitis. At admission, neurological examination was normal as well as MRI of the brain and spine. Transoesophageal cardiac ultrasound only showed a thrombus in the left atria. He also underwent surgery for a septic arthritis of the right knee. A right jugular catheter could not be put. A goitre was also noticed. Vasopressor and mechanical ventilation were discontinued the 3rd and 5th days from admission. The patient was treated with methicillin and heparin.

Day 8, the patient developed agitation and delirium. Neurological examination showed


- 1. A weakness of the right arm,
- 2. A slight right central facial palsy,
- 3. A ptosis and miosis of the right eye.
- 4. The right arm was also oedematous.
- 5. The brain CT scan and CSF analysis were normal. EEG showed a slow cortical activity. Biochemical screening showed a moderate renal insufficiency. Blood culture were negative.

Clinical case

- **1. Left pre-rolandic lesion**
- 2. Thrombosis of right jugular vein
- 3. Orbenin overdose

Clinical case

• Mme X..., 53 years old, traited with CS et I- for LED, is admitted for ARF related to a thrombotic microangiopathy. Occurrence of a hyperactive delirium: « on me vole mon enfant, les médecins me volent mon enfant... »

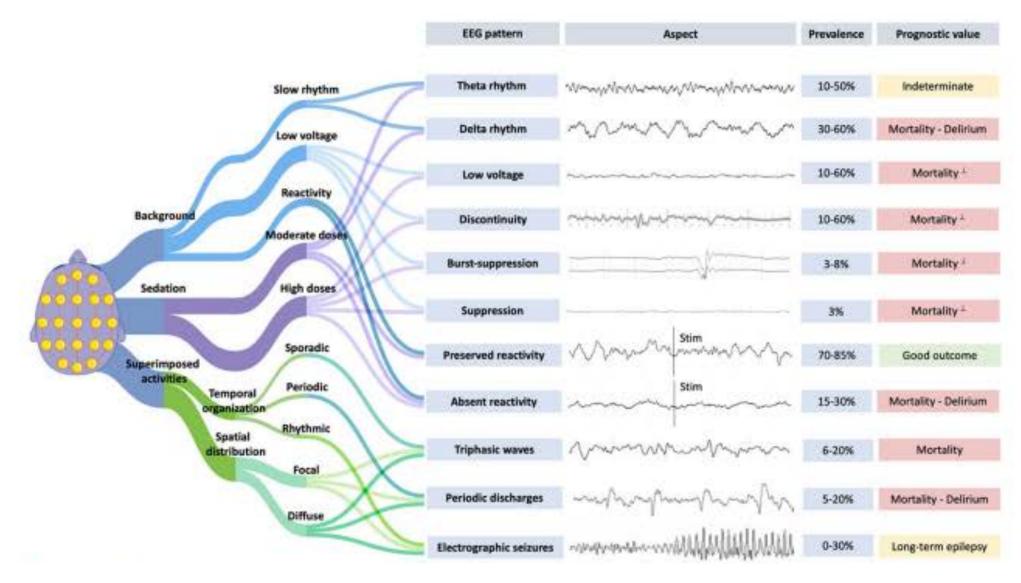
Thank you For your Attention !

Tarek Sharshar

t.sharshar@ghu-paris.fr

First conclusion

Prevalence


- Historically: 60 to 80%
- Nowadays: 25 to 45% (MV or shock)

Phenotypes

- Hyperactive, hypoactive or mixed
- Hypoactive more frequent in elderly and worst outcome
- Validated scores
 - CAM-ICU, ICU-DSC...
- **Risk factors**
 - Predeleric score
 - Age, prexisting mental/neurological disorders, sepsis, sedation, metabolic disorders, drug overdoses or withdrawal...
- Complications
 - Increased short and long-term mortality
 - Increased long-term psychocognitive impairment

<u>Ely et al – JAMA – 2001; Girard et al – Lancet – 2008; Ely et al – JAMA «- 2004;Bergeron et al – ICM – 2001;</u> Girard et al – NEJM – 2018; Salluh et al – BMJ - 2015

EEG in septic patients

Sonneville R – Crit Care - 2023