When is non-invasive monitoring

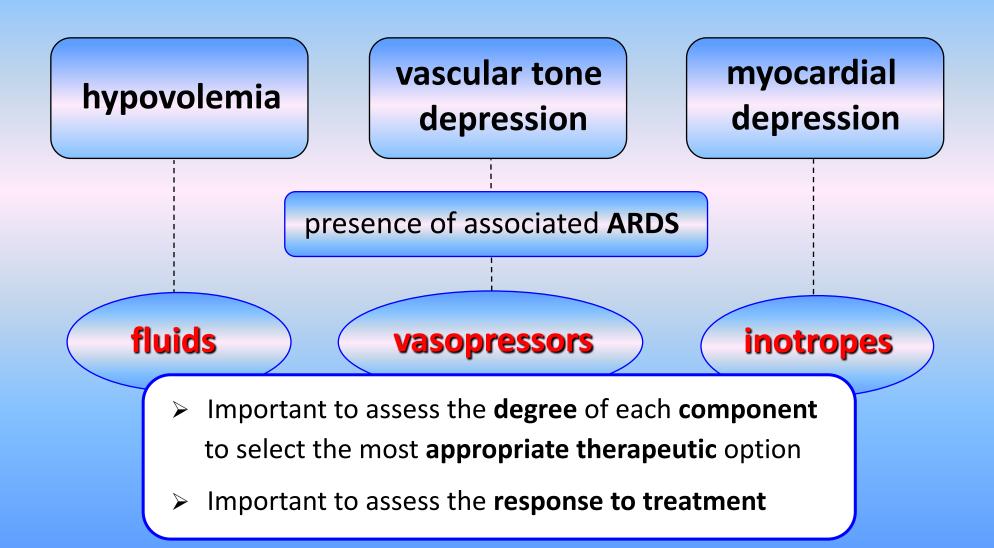
not enough in shock states?

Prof. Jean-Louis TEBOUL

Medical ICU

AP-HP. Université Paris-Saclay Bicetre hospital

University Paris-Saclay


France

Conflicts of interest

- Member of the Medical Advisory Board of **Getinge**
- Lectures for **Edwards LifeSciences**
- Lectures for Masimo
- Lectures for **Cheetah**

Various and intricate mechanisms responsible for hemodynamic failure during sepsis

CONFERENCE REPORTS AND EXPERT PANEL

CrossMark

Less invasive hemodynamic monitoring in critically ill patients

Jean-Louis Teboul^{1*}, Bernd Saugel², Maurizio Cecconi³, Daniel De Backer⁴, Christoph K. Hofer⁵, Xavier Monnet¹, Azriel Perel⁶, Michael R. Pinsky⁷, Daniel A. Reuter², Andrew Rhodes³, Pierre Squara⁸, Jean-Louis Vincent⁹ and Thomas W. Scheeren¹⁰

Intensive Care Med (2014) 40:1795-1815

Maurizio Cecconi Daniel De Backer Massimo Antonelli Richard Beale Jan Bakker Christoph Hofer Roman Jaeschke Alexandre Mebazaa Michael R. Pinsky Jean Louis Teboul Jean Louis Vincent Andrew Rhodes

CONFERENCE REPORTS AND EXPE

Consensus on circulatory and hemodynamic monito of the European Society o Medicine

REVIEW

How can assessing hemodynamics help to assess volume status?

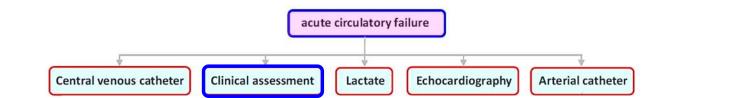
Daniel De Backer^{1*}, Nadia Aissaoui², Maurizio Cecconi^{3,4}, Michelle S. Chew⁵, André Denault^{6,7}, Ludhmila Hajjar⁸, Glenn Hernandez⁹, Antonio Messina^{3,4}, Sheila Nainan Myatra¹⁰, Marlies Ostermann¹¹, Michael R. Pinsky¹², Jean-Louis Teboul¹³, Philippe Vignon¹⁴, Jean-Louis Vincent¹⁵ and Xavier Monnet¹³

Intensive Care Med (2022) 48:1482-1494

REVIEW

Effective hemodynamic monitoring

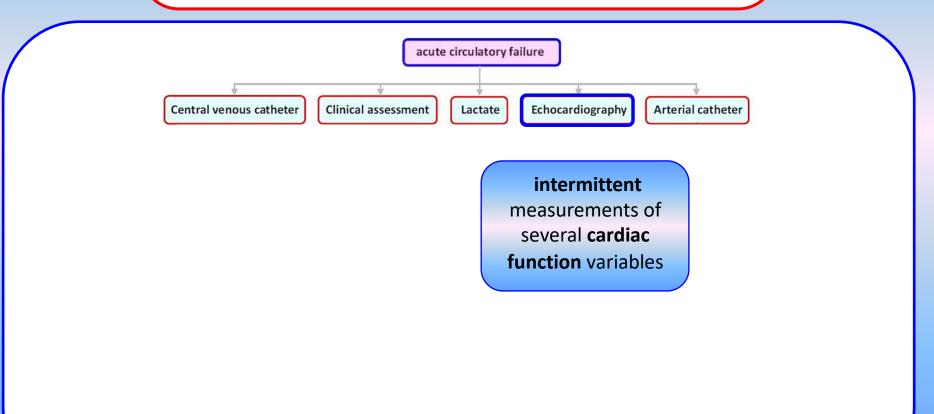
Michael R. Pinsky^{1*}, Maurizio Cecconi^{2,3}, Michelle S. Chew⁴, Daniel De Backer⁵, Ivor Douglas⁶, Mark Edwards⁷, Olfa Hamzaoui⁸, Glenn Hernandez⁹, Greg Martin¹⁰, Xavier Monnet¹¹, Bernd Saugel¹², Thomas W. L. Scheeren¹³, Jean-Louis Teboul¹⁴ and Jean-Louis Vincent¹⁵


Critical Care

(2022) 26:294

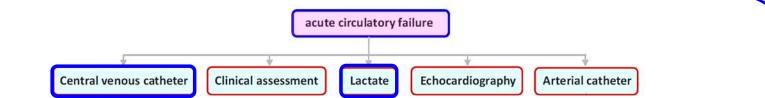
CONFERENCE REPORTS AND EXPERT PANEL

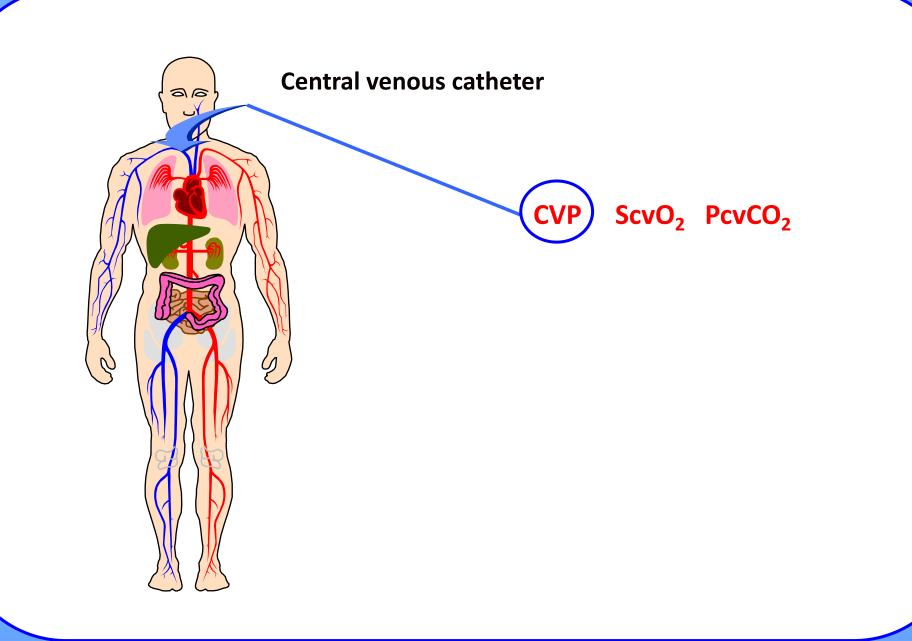
CrossMark


Less invasive hemodynamic monitoring in critically ill patients

CONFERENCE REPORTS AND EXPERT PANEL

CrossMark


Less invasive hemodynamic monitoring in critically ill patients



CONFERENCE REPORTS AND EXPERT PANEL

CrossMark

Less invasive hemodynamic monitoring in critically ill patients

SPECIAL ISSUE INSIGHT

Central venous pressure (CVP)

Olfa Hamzaoui^{1*} and Jean-Louis Teboul^{2,3}

Intensive Care Med (2022) 48:1498–1500

Take home messages

Central venous pressure is a pivotal hemodynamic variable, since

it provides important information on the RV function and on the

mean organ perfusion pressure

SPECIAL ISSUE INSIGHT

Central venous pressure (CVP)

Olfa Hamzaoui^{1*} and Jean-Louis Teboul^{2,3}

Intensive Care Med (2022) 48:1498–1500

Take home messages

Central venous pressure is a pivotal hemodynamic variable, since

it provides important information on the RV function and on the

mean organ perfusion pressure

Low mean perfusion pressure is a risk factor for progression of acute kidney injury in critically ill patients – A retrospective analysis

Marlies Ostermann^{1*}, Anna Hall² and Siobhan Crichton³

BMC Nephrology (2017) 18:151

Mean perfusion pressure (MPP = MAP-CVP) but **not MAP**

was an independent factor associated with AKI progression.

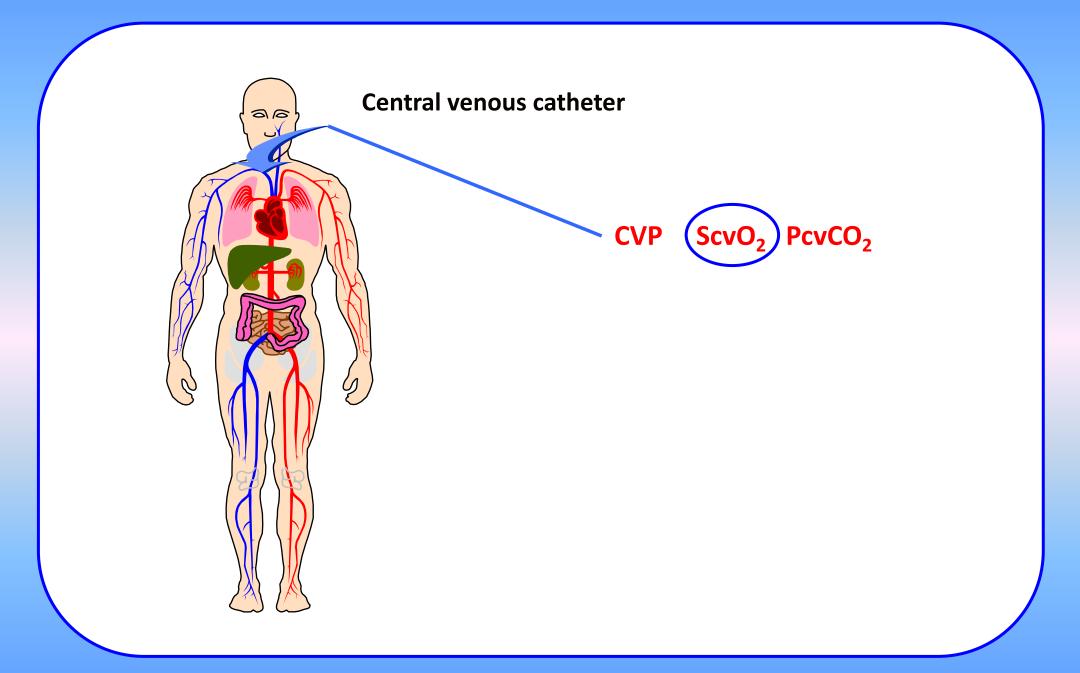
A value of **MPP** of **60 mmHg** was found as a cutoff.

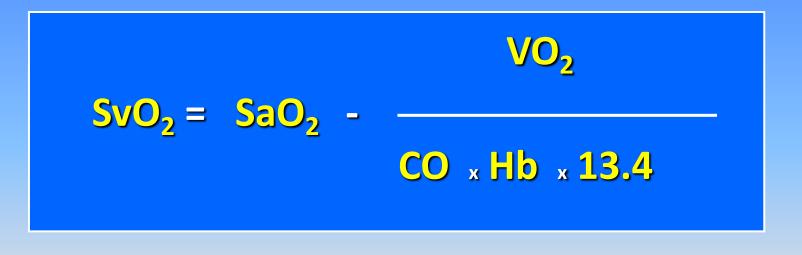
SPECIAL ISSUE INSIGHT

Central venous pressure (CVP)

Olfa Hamzaoui^{1*} and Jean-Louis Teboul^{2,3}

Intensive Care Med (2022) 48:1498–1500


Take home messages


Central venous pressure is a pivotal hemodynamic variable, since

it provides important information on the RV function and on the

mean organ perfusion pressure. CVP cannot be used to predict

fluid responsiveness

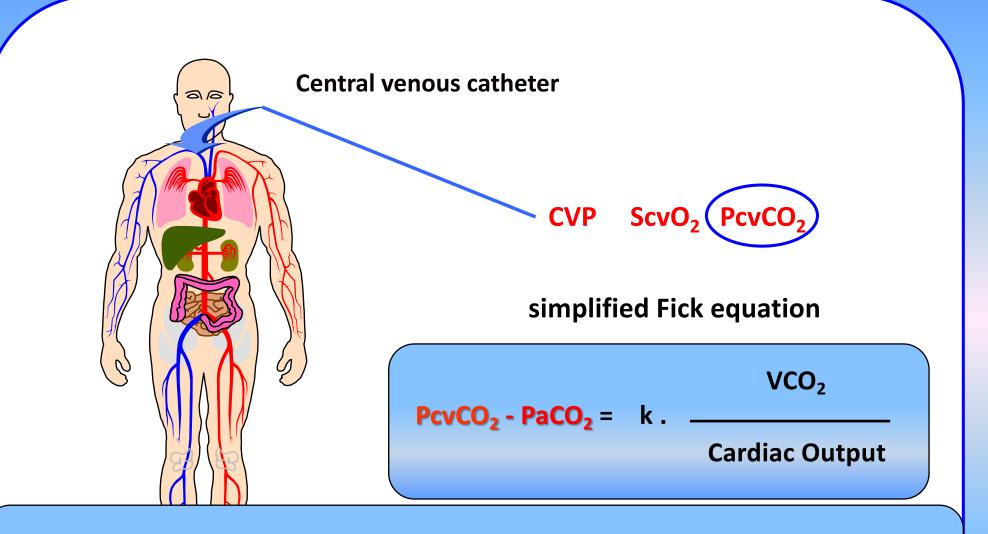
CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

Jean-Louis Teboul^{1*}, Bernd Saugel², Maurizio Cecconi³, Daniel De Backer⁴, Christoph K. Hofer⁵, Xavier Monnet¹, Azriel Perel⁶, Michael R. Pinsky⁷, Daniel A. Reuter², Andrew Rhodes³, Pierre Squara⁸, Jean-Louis Vincent⁹ and Thomas W. Scheeren¹⁰

CrossMark

 $ScvO_2$ is used as a surrogate of mixed venous blood oxygen saturation (SvO₂), which reflects in real time the balance between oxygen consumption and oxygen delivery.


CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

Jean-Louis Teboul^{1*}, Bernd Saugel², Maurizio Cecconi³, Daniel De Backer⁴, Christoph K. Hofer⁵, Xavier Monnet¹, Azriel Perel⁶, Michael R. Pinsky⁷, Daniel A. Reuter², Andrew Rhodes³, Pierre Squara⁸, Jean-Louis Vincent⁹ and Thomas W. Scheeren¹⁰

CrossMark

 $ScvO_2$ is used as a surrogate of mixed venous blood oxygen saturation (SvO₂), which reflects in real time the balance between oxygen consumption and oxygen delivery. Hence, a low $ScvO_2$ may indicate insufficient global oxygen delivery in case of shock and incite one to increase it.

PcvCO₂ - PaCO₂ marker of the "adequacy" of the venous blood flow to clear the CO₂ produced in the peripheral tissues

REVIEW

Open Access

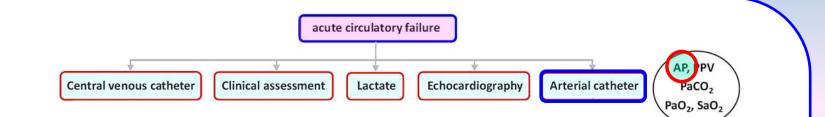
In some forms of distributive shock, $ScvO_2$ can be > 70% despite ongoing CVI due to impairment of oxygen extraction [84, 86]. A v-aPCO₂ > 6 mmHg (or > 0.8 kPa) identifies patients for whom an increase in CO may be beneficial in sustaining organ perfusion despite a $SvO_2 > 70\%$. If the v-aPCO₂ is < 6 mmHg (or < 0.8 kPa), it is unlikely that increasing CO would reverse organ hypoperfusion.

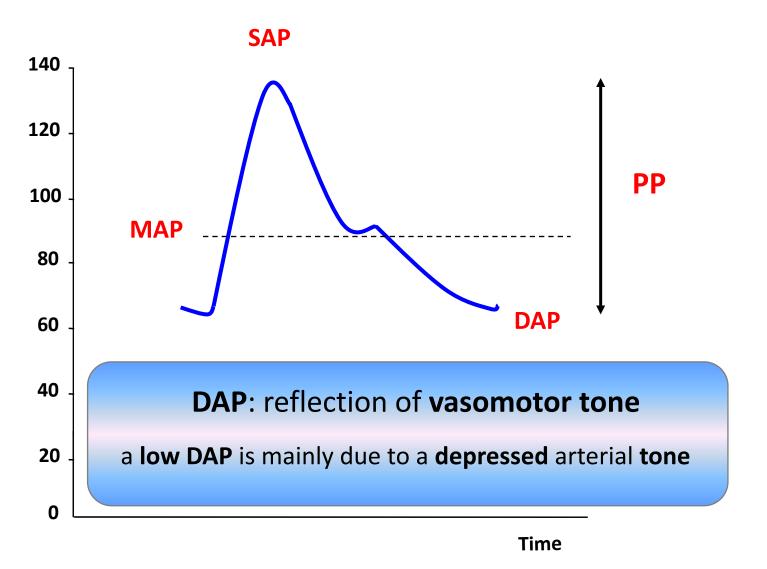
A high PCO₂ gap suggests that elevation of CO
 can be a good therapeutic option

A normal PCO₂ gap suggests that elevation of CO
 cannot be a priority in the therapeutic strategy

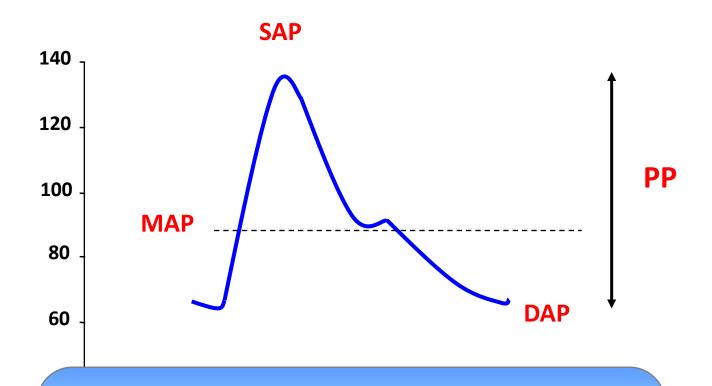
CONFERENCE REPORTS AND EXPERT PANEL

CrossMark


Less invasive hemodynamic monitoring in critically ill patients

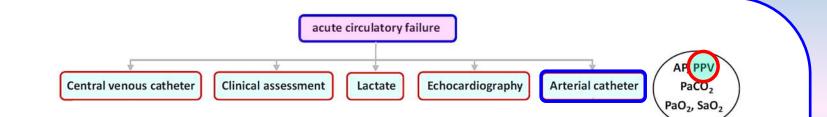

CONFERENCE REPORTS AND EXPERT PANEL

CrossMark


Less invasive hemodynamic monitoring in critically ill patients

Arterial pressure (mmHg)

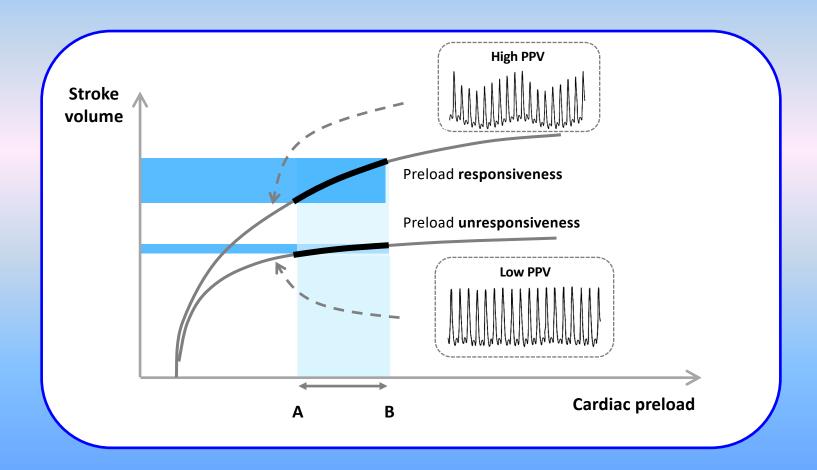
Arterial pressure (mmHg)


PP depends on stroke volume and arterial stiffness

PP is **high** in cases of **stiff** arteries (for a normal SV)

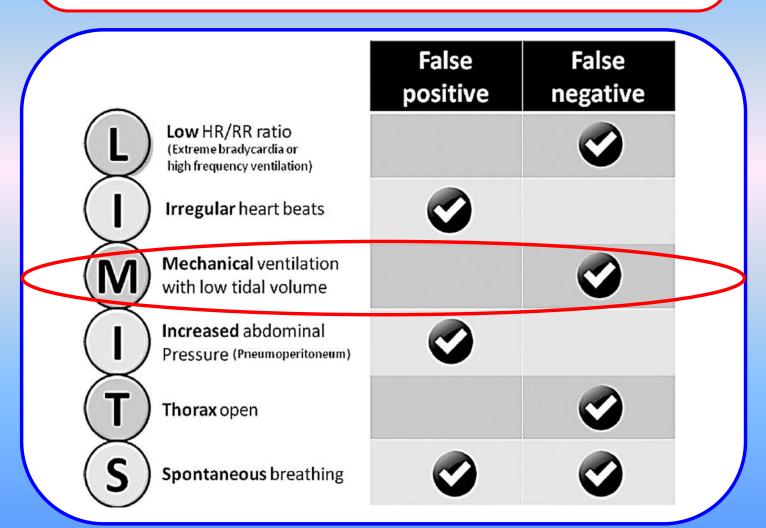
CONFERENCE REPORTS AND EXPERT PANEL

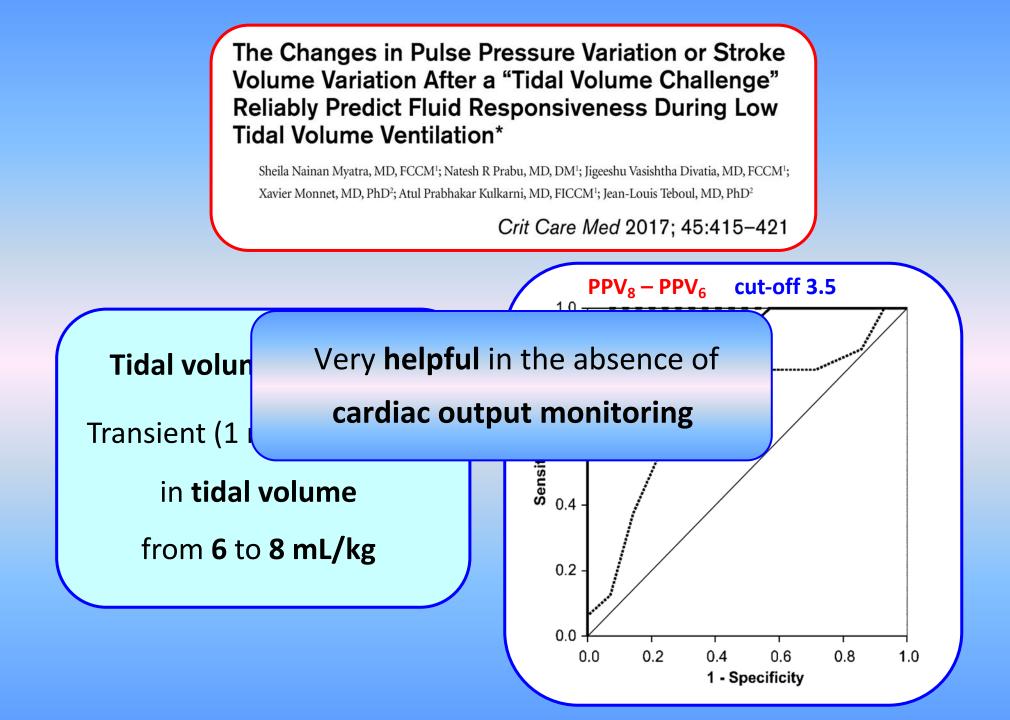
CrossMark

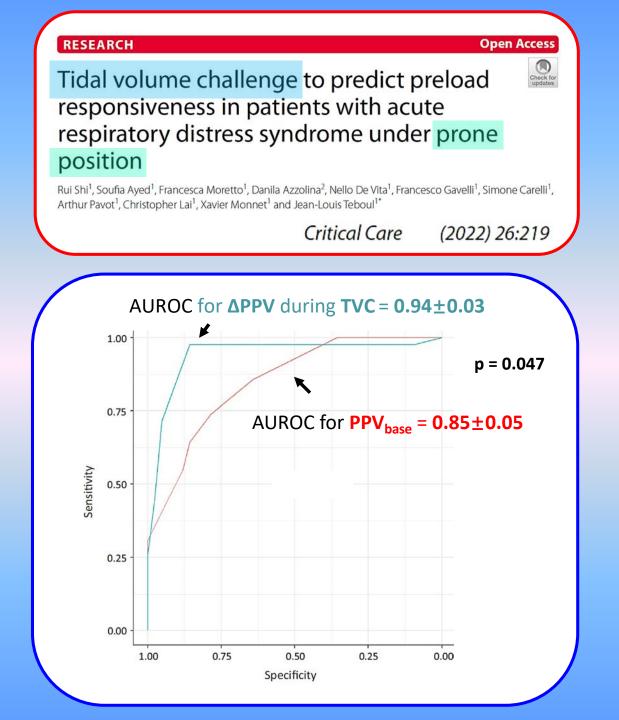

Less invasive hemodynamic monitoring in critically ill patients

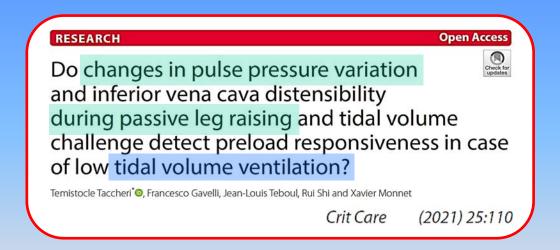
Arterial Pulse Pressure Variation with Mechanical Ventilation

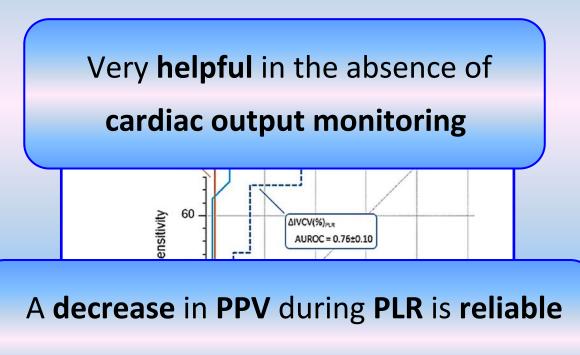
Jean-Louis Teboul¹, Xavier Monnet¹, Denis Chemla², and Frédéric Michard³

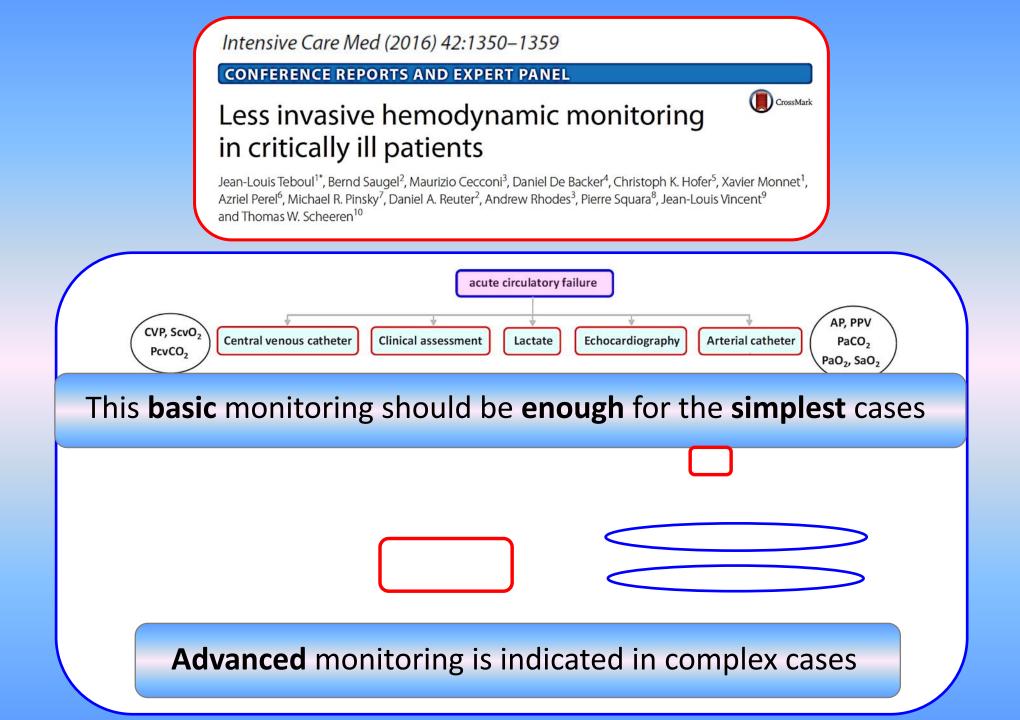

Am J Respir Crit Care Med Vol 199, Iss 1, pp 22-31, Jan 1, 2019




Applicability of pulse pressure variation: how many shades of grey?


Frederic Michard^{1*}, Denis Chemla² and Jean-Louis Teboul³


Critical Care (2015) 19:144



to predict fluid responsiveness

Intensive Care Med (2014) 40:1795-1815

CONFERENCE REPORTS AND EXPERT PANEL

Maurizio Cecconi Daniel De Backer Massimo Antonelli Richard Beale Jan Bakker Christoph Hofer Roman Jaeschke Alexandre Mebazaa Michael R. Pinsky Jean Louis Teboul Jean Louis Vincent Andrew Rhodes Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine

We suggest the use of **transpulmonary thermodilution** or **PAC**

in patients with severe shock especially in the case of associated **ARDS**

Level 2; QoE low (C)

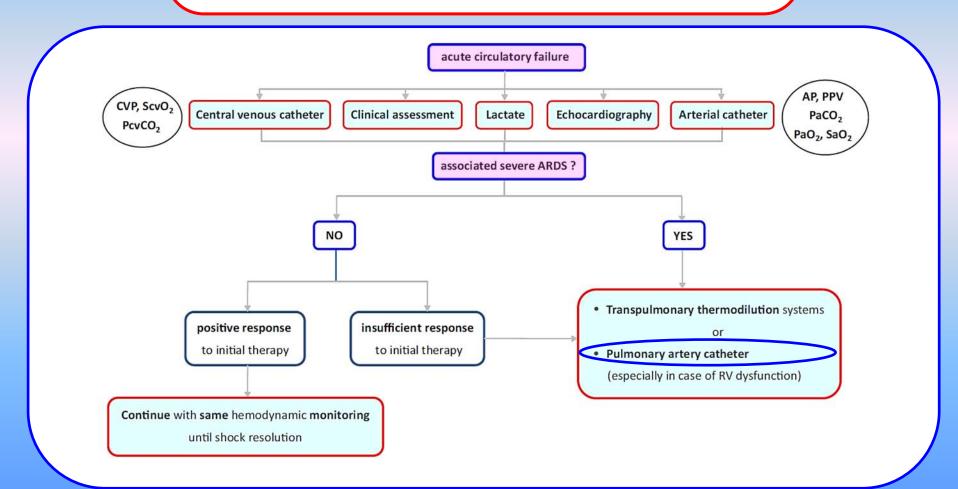
REVIEW

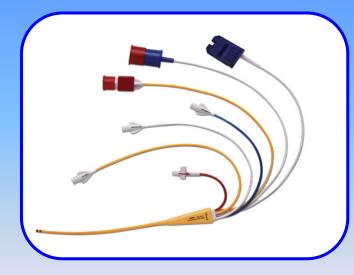
Open Access

Effective hemodynamic monitoring

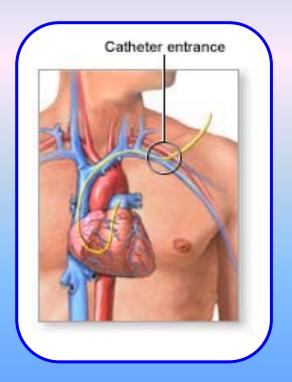
Michael R. Pinsky^{1*}, Maurizio Cecconi^{2,3}, Michelle S. Chew⁴, Daniel De Backer⁵, Ivor Douglas⁶, Mark Edwards⁷, Olfa Hamzaoui⁸, Glenn Hernandez⁹, Greg Martin¹⁰, Xavier Monnet¹¹, Bernd Saugel¹², Thomas W. L. Scheeren¹³, Jean-Louis Teboul¹⁴ and Jean-Louis Vincent¹⁵

Critical Care (2022) 26:294

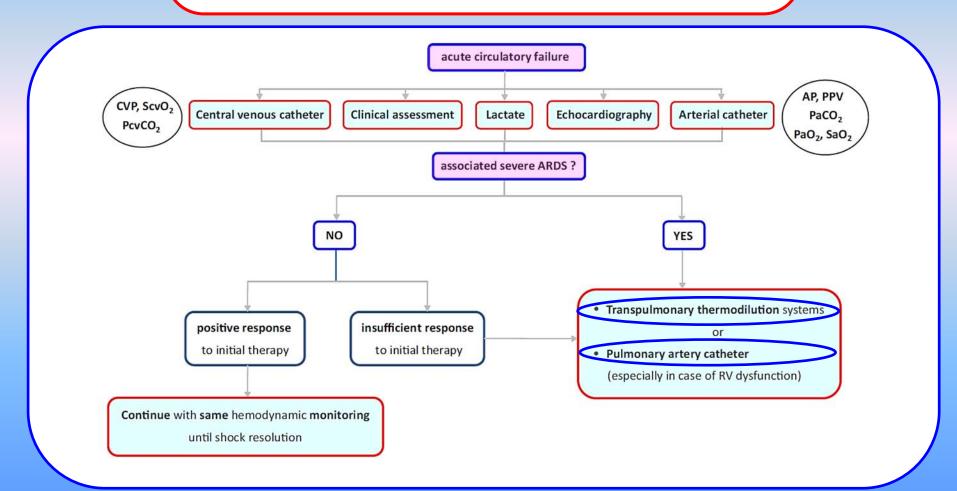

is necessary to diagnose and direct the management of these patients in both a static and dynamic fashion but is not well suited to continual monitoring.

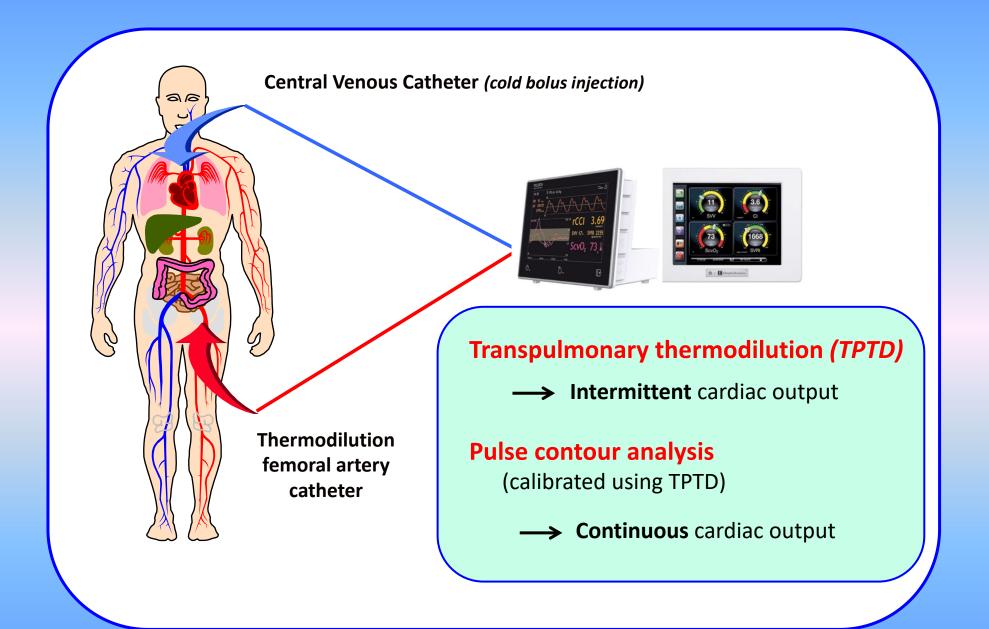


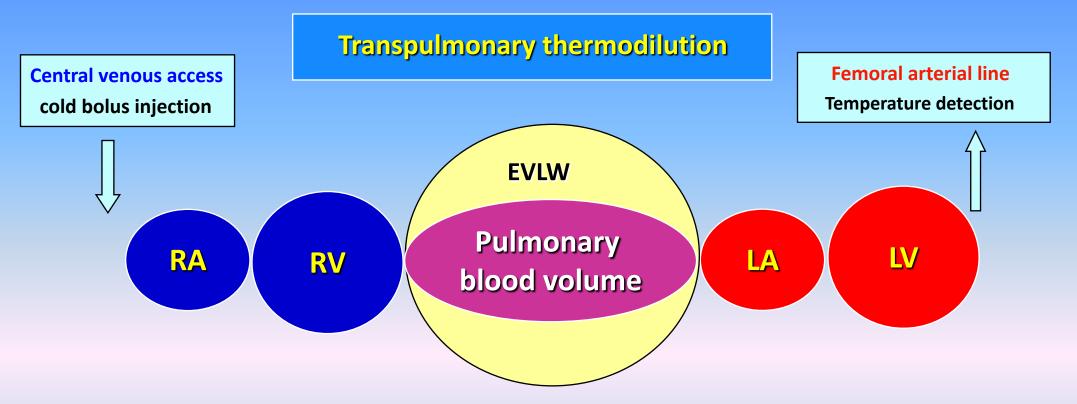
CONFERENCE REPORTS AND EXPERT PANEL

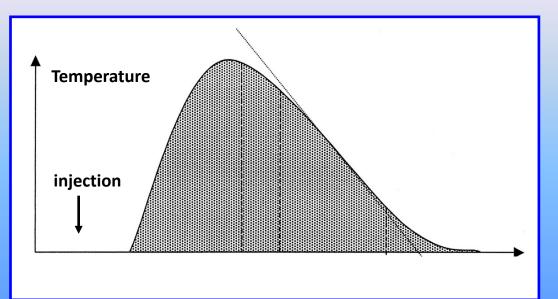

CrossMark

Less invasive hemodynamic monitoring in critically ill patients




Intermittent and semi-continuous CO + Continuous SvO₂ monitoring + PvCO₂ + Intermittent measurements of RAP PAP PAOP


CONFERENCE REPORTS AND EXPERT PANEL


CrossMark

Less invasive hemodynamic monitoring in critically ill patients

Cardiac Output Monitoring Using Indicator-Dilution Techniques: Basics, Limits, and Perspectives

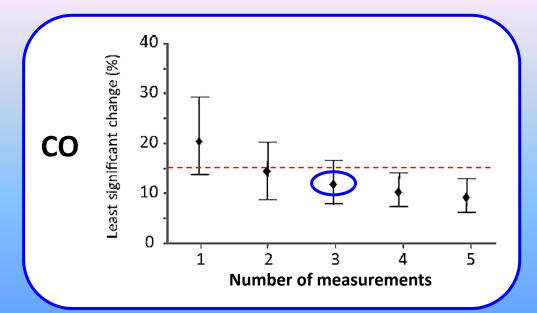
Daniel A. Reuter, MD, PhD,* Cecil Huang, MD, PhD,† Thomas Edrich, MD, PhD,† Stanton K. Shernan, MD,† and Holger K. Eltzschig, MD, PhD††§

Anesth Analg 2010;110:799-811

 Table 2. Comparisons of Transcardiopulmonary Thermodilution Versus Pulmonary Artery Thermodilution

 Cardiac Output

	Study variables			Measures of agreement		
Patient population	Ages	N	n	r	Bias	Precision
Liver transplant	24-66	62	186	0.93	+1.9%	11%
Severe heart failure	ni	29	325	ni	10.3%	27.3%
Cardiac surgery	41-81	24	216	0.93	+4.9%	11%
Burns	19-78	23	109	0.97	+8.0%	7.3%
Burns	21-61	14	113	0.81	ni	ni
Pediatrics	1–8	10	60	ni	+4.3%	4.8%
Intensive care unit	27-79	20	190	0.91	+4.1%	10%
Cardiology	0.5-25	21	48	0.97	-4.7%	12%
Cardiac surgery	43-73	18	36	0.96	+7.4%	7.6%
ARDS	19-75	18	160	0.91	-0.33%	12%
	Liver transplant Severe heart failure Cardiac surgery Burns Burns Pediatrics Intensive care unit Cardiology Cardiac surgery	Patient populationAgesLiver transplant24–66Severe heart failureniCardiac surgery41–81Burns19–78Burns21–61Pediatrics1–8Intensive care unit27–79Cardiology0.5–25Cardiac surgery43–73	Patient populationAgesNLiver transplant24–6662Severe heart failureni29Cardiac surgery41–8124Burns19–7823Burns21–6114Pediatrics1–810Intensive care unit27–7920Cardiology0.5–2521Cardiac surgery43–7318	Patient populationAgesNnLiver transplant24–6662186Severe heart failureni29325Cardiac surgery41–8124216Burns19–7823109Burns21–6114113Pediatrics1–81060Intensive care unit27–7920190Cardiology0.5–252148Cardiac surgery43–731836	Patient population Ages N n r Liver transplant 24–66 62 186 0.93 Severe heart failure ni 29 325 ni Cardiac surgery 41–81 24 216 0.93 Burns 19–78 23 109 0.97 Burns 21–61 14 113 0.81 Pediatrics 1–8 10 60 ni Intensive care unit 27–79 20 190 0.91 Cardiology 0.5–25 21 48 0.97 Cardiology 0.5–25 21 48 0.96	Patient populationAgesNnrBiasLiver transplant24–66621860.93+1.9%Severe heart failureni29325ni10.3%Cardiac surgery41–81242160.93+4.9%Burns19–78231090.97+8.0%Burns21–61141130.81niPediatrics1–81060ni+4.3%Intensive care unit27–79201900.91+4.1%Cardiology0.5–2521480.97-4.7%Cardiac surgery43–7318360.96+7.4%


What is the precision of the transpulmonary thermodilution method?

Precision of the transpulmonary thermodilution measurements

Xavier Monnet^{1,2*}, Romain Persichini^{1,2}, Mariem Ktari^{1,2}, Mathieu Jozwiak^{1,2}, Christian Richard^{1,2} and Jean-Louis Teboul^{1,2}

Critical Care 2011, **15**:R204

What are the **number** of cold bolus injections that are necessary for achieving **an acceptable level** of **precision** for measuring **cardiac output** ?

For assessing a 15% change in CO one needs averaging three measurements

Transpulmonary thermodilution

systems are not just

CO monitoring systems

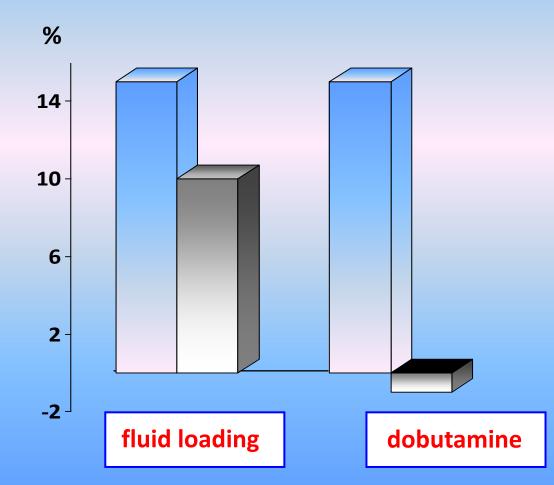
Transpulmonary thermodilution: advantages and limits

Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147

a measure of global

cardiac preload


Is Global End-Diastolic Volume really a marker of preload?

Global End-Diastolic Volume as an Indicator of Cardiac Preload in Patients With Septic Shock*

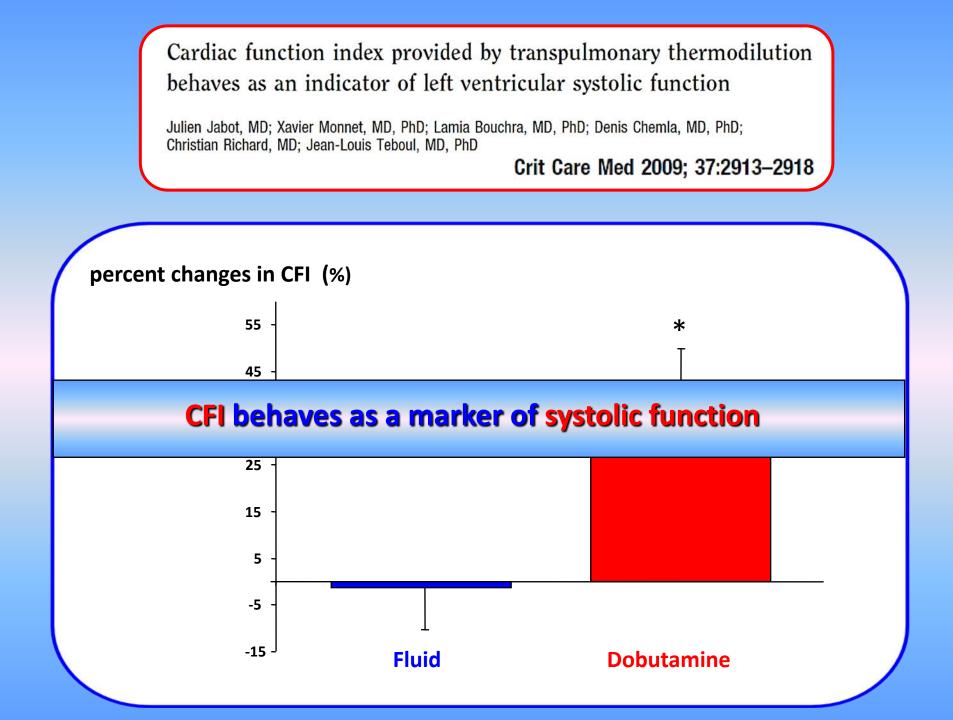
Frédéric Michard, MD, PhD; Sami Alaya, MD; Véronique Zarka, MD; Mabrouk Bahloul, MD; Christian Richard, MD; and Jean-Louis Teboul, MD, PhD

CHEST 2003; 124:1900-1908

GEDV behaves as a marker of preload

Changes in COChanges in GEDV

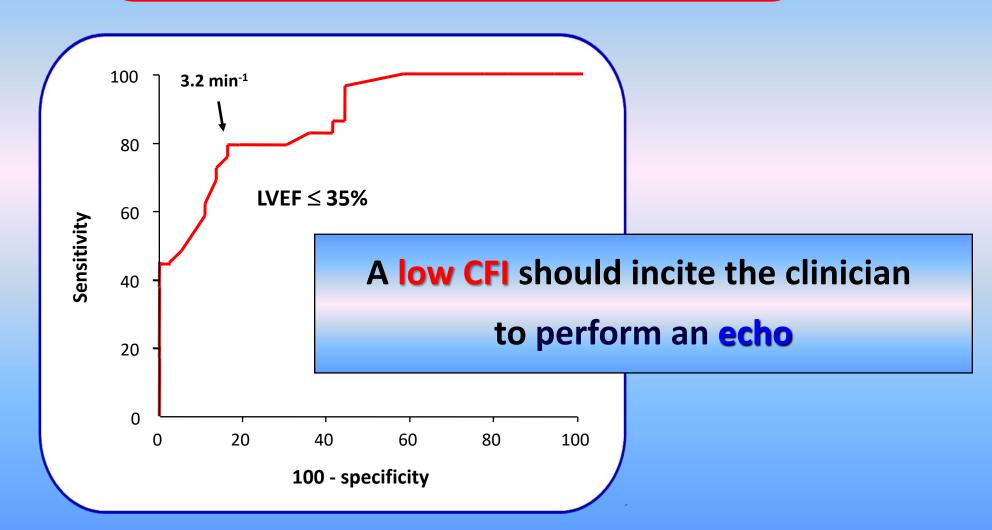
Transpulmonary thermodilution: advantages and limits

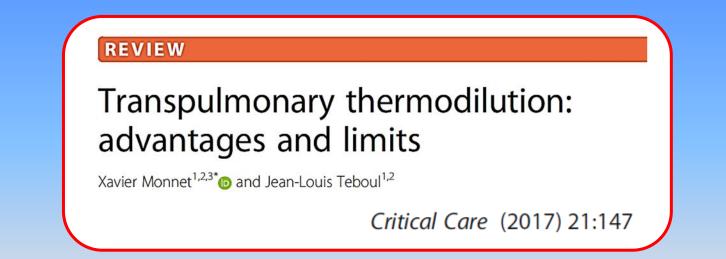

Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147

CFI and GEF

markers of


global systolic function



Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function

Julien Jabot, MD; Xavier Monnet, MD, PhD; Lamia Bouchra, MD, PhD; Denis Chemla, MD, PhD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2009; 37:2913–2918

Extravascular lung water

a quantitative measure of lung edema

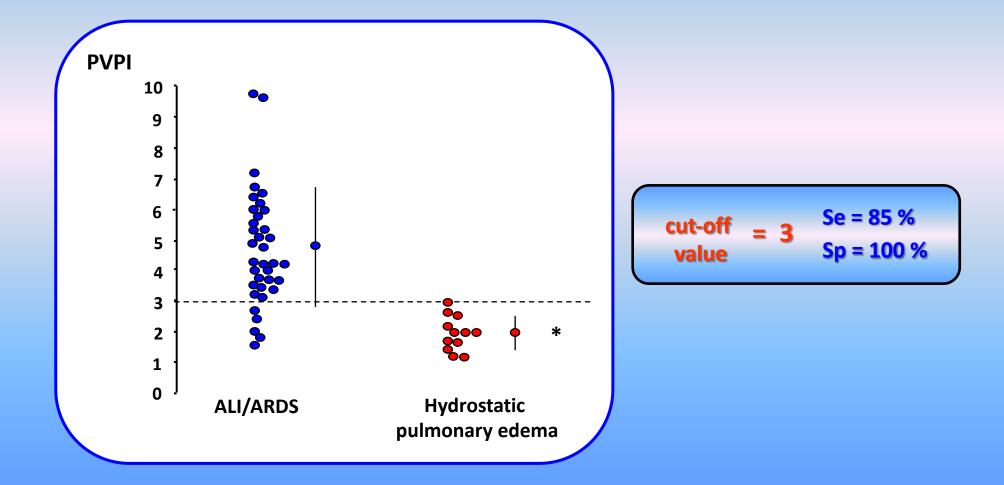
RESEARCH

Open Access

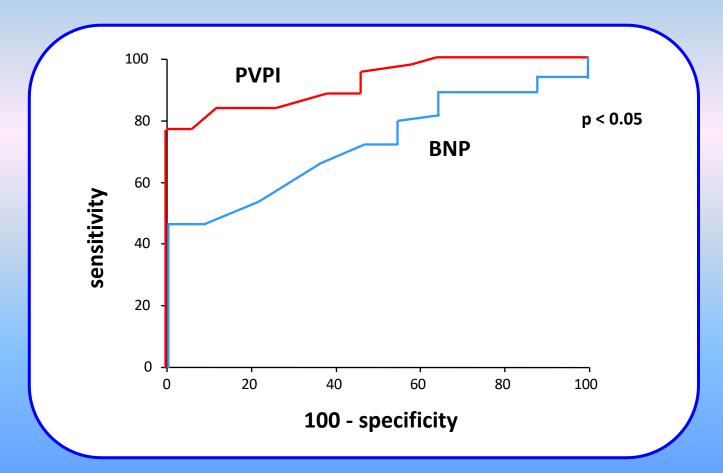
Extravascular lung water levels are associated with mortality: a systematic review and meta-analysis

Francesco Gavelli^{1,2†}, Rui Shi^{1,3*†}, Jean-Louis Teboul^{1,3}, Danila Azzolina⁴, Pablo Mercado⁵, Mathieu Jozwiak^{6,7}, Michelle S. Chew⁸, Wolfgang Huber⁹, Mikhail Y. Kirov¹⁰, Vsevolod V. Kuzkov¹⁰, Tobias Lahmer⁹, Manu L. N. G. Malbrain^{11,12}, Jihad Mallat^{13,14}, Samir G. Sakka¹⁵, Takashi Tagami¹⁶, Tai Pham^{1,17} and Xavier Monnet^{1,3}

Critical Care (2


(2022) 26:202

	Su	rvivo	ors	Non	-surv	vors		Mean Difference	Mean Difference
Study ID	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Brown 2013 ³³	12	5	41	17	9	18	4.5%	-5.00 [-9.43, -0.57]	
Chew 2012 ³¹	9.1	1.3	36	10.6	1.2	15	6.9%	-1.50 [-2.24, -0.76]	
Chung 2008 ²⁸	8.5	1.7	16	21	3.8	17	6.3%	-12.50 [-14.49, -10.51]	
hung 2010 ²⁹	12.2	5.8	34	24.4	10.6	33	4.7%	-12.20 [-16.31, -8.09] —	
ordemans 201213	11.7	4.3	58	13.7	5.9	65	6.4%	-2.00 [-3.81, -0.19]	
raig 2010 ³⁰	10.6	2.4	32	17.5	2	12	6.6%	-6.90 [-8.30, -5.50]	
uber 2020 ³⁶	10	4	33	14	9	16	4.4%	-4.00 [-8.62, 0.62]	
zwiak 2013 ⁸	19	7	92	24	10	108	6.0%	-5.00 [-7.37, -2.63]	
uzkov 2006 ⁷	8	3	16	11.07	6.24	22	5.6%	-3.07 [-6.06, -0.08]	
1a 2019 ³⁵	11.2	3.4	23	13.8	6.1	18	5.5%	-2.60 [-5.74, 0.54]	
1allat 201232	14.5	1.6	32	16.5	3	23	6.7%	-2.00 [-3.35, -0.65]	
lartin 2005 ²⁷	8	3.7	17	14	3.1	12	6.0%	-6.00 [-8.48, -3.52]	
hillips 200811	11.6	1.9	12	20.6	4.6	7	5.1%	-9.00 [-12.57, -5.43]	
hi 2021 ³⁷	18.7	5.2	47	23.3	7.7	73	6.1%	-4.60 [-6.91, -2.29]	
agami 2014 ¹⁴	20.7	7.3	133	21.8	9.2	59	5.8%	-1.10 [-3.76, 1.56]	
Vang 2016 ¹²	12	4.4	45	14.4	5.3	60	6.4%	-2.40 [-4.26, -0.54]	
hao 2015 ³⁴	13	0.5	13	19.5	0.5	8	7.0%	-6.50 [-6.94, -6.06]	(m)
otal (95% CI)			680			566	100.0%	-4.97 [-6.54, -3.41]	•
leterogeneity: Tau ² =	9.13; Chi ² =	258.	55, df = 1	6 (P < 0.00	001); <i>I</i>	² = 94%			
est for overall effect:								Favo	ors -10 -5 0 5 10 vivors Non-survivor



Pulmonary vascular permeability index (PVPI) measure of lung capillary leak

Intensive Care Med (2007) 33:448-453	ORIGINAL
Nadia Anguel	Assessing pulmonary permeability
David Osman	by transpulmonary thermodilution allows
Olfa Hamzaoui	differentiation of hydrostatic
Christian Richard	pulmonary edema from ALI/ARDS

Intensive Care Med (2007) 33:448–453	ORIGINAL
Xavier Monnet Nadia Anguel David Osman Olfa Hamzaoui Christian Richard Jean-Louis Teboul	Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS

Extravascular Lung Water is an Independent Prognostic Factor in Patients with Acute Respiratory Distress Syndrome*

Mathieu Jozwiak, MD; Serena Silva, MD; Romain Persichini, MD; Nadia Anguel, MD; David Osman, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD; Xavier Monnet, MD, PhD

Crit Care Med 2013; 41:472-480

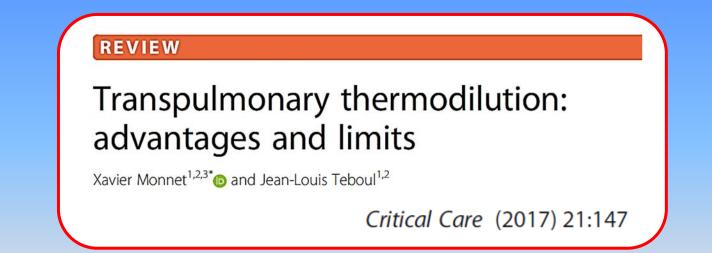
PVPI is an **independent** predictor of **mortality** in ARDS patients

Mean PEEP	0.78	(0.67 – 0.91)	0.002
Minimal PaO ₂ / FiO ₂	0.98	(0.97 - 0.99)	0.0009
SAPS II	1.03	(1.01 - 1.05)	0.008
PVPI _{max}	1.07	(1.02 - 1.12)	0.03
Mean fluid balance	1.0004	(1.0000 – 1.0007)	0.03

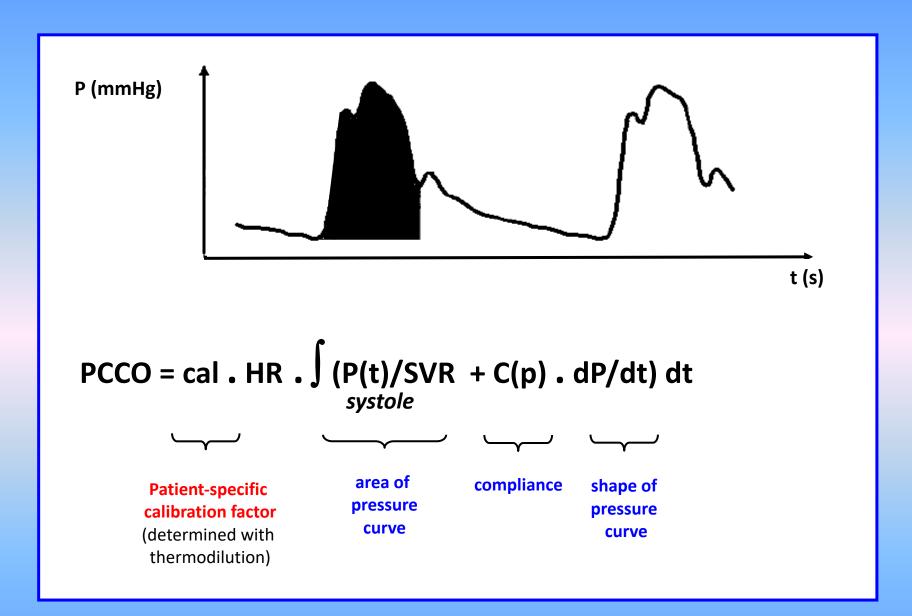
200 pts

D₂₈ mortality: 54%

Transpulmonary thermodilution: advantages and limits


Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147



for guiding

fluid administration

Continuous cardiac output

One frequently asked question

How often do we need to recalibrate?

Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period*

Olfa Hamzaoui, MD; Xavier Monnet, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2008; 36:434-440

Intervals of Time	Percentage
(Elapsed fro We recommend to recalibrate	Error
With	27
Betw	26
Betw	32
Betw	37
Between 5 and 4 nrs45.05 $<.001$ 0.03 ± 0.03 Between 4 and 5 hrs47.62 $<.001$ 0.14 ± 0.63 Between 5 and 6 hrs51.62 $<.001$ 0.13 ± 0.66	35 35 36

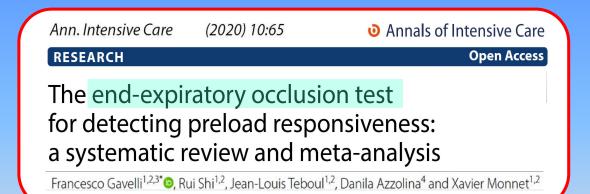
How can assessing hemodynamics help to assess volume status?

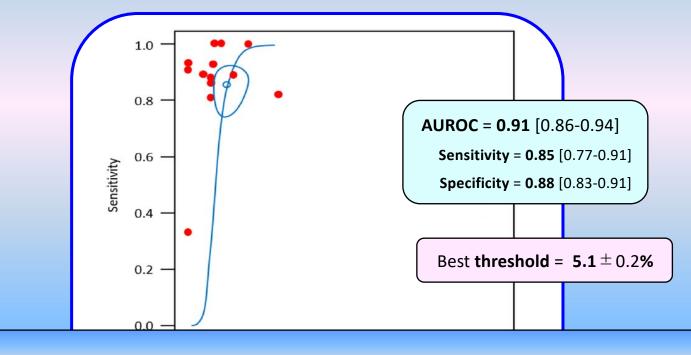
Daniel De Backer^{1*}, Nadia Aissaoui², Maurizio Cecconi^{3,4}, Michelle S. Chew⁵, André Denault^{6,7}, Ludhmila Hajjar⁸, Glenn Hernandez⁹, Antonio Messina^{3,4}, Sheila Nainan Myatra¹⁰, Marlies Ostermann¹¹, Michael R. Pinsky¹², Jean-Louis Teboul¹³, Philippe Vignon¹⁴, Jean-Louis Vincent¹⁵ and Xavier Monnet¹³

Intensive Care Med (2022) 48:1482-1494

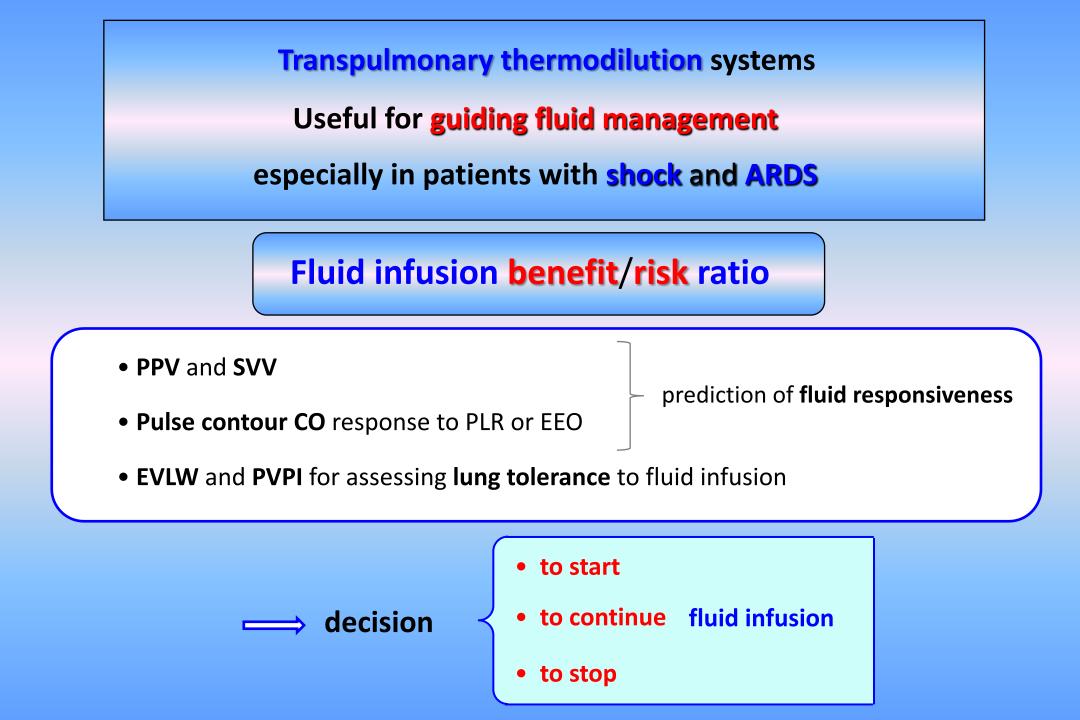
Another advantage of transpulmonary thermodilution devices is the calibrated estimation of CO with pulse contour analysis which is perfect for performing tests of fluid responsiveness, like the passive leg raising (PLR) or the end-expiratory occlusion test Intensive Care Med (2016) 42:1935–1947ORIGINALXavier Monnet
Paul Marik
Jean-Louis TeboulPassive leg raising for predicting fluid
responsiveness: a systematic review
and meta-analysis

Sensitivity 21 **995** pts 0.9 clinical 0.8 studies 0.7 **Changes in CO** 0.6 AUC: 0.95 ± 0.01 0.5 Threshold: 10% 0.4 -0.3 0.2 -0.1 0 -0.2 0.4 0.8 0.6 1-specificity

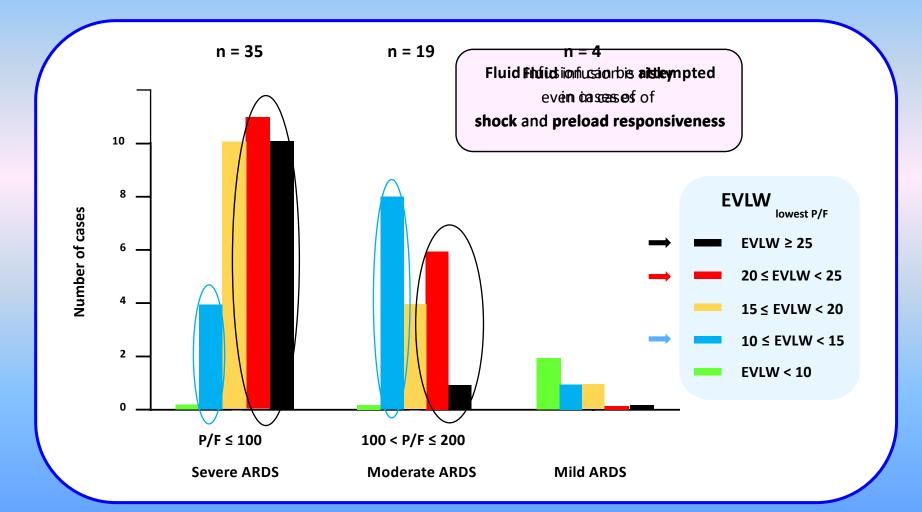

How can assessing hemodynamics help to assess volume status?



Daniel De Backer^{1*}, Nadia Aissaoui², Maurizio Cecconi^{3,4}, Michelle S. Chew⁵, André Denault^{6,7}, Ludhmila Hajjar⁸, Glenn Hernandez⁹, Antonio Messina^{3,4}, Sheila Nainan Myatra¹⁰, Marlies Ostermann¹¹, Michael R. Pinsky¹², Jean-Louis Teboul¹³, Philippe Vignon¹⁴, Jean-Louis Vincent¹⁵ and Xavier Monnet¹³


Intensive Care Med (2022) 48:1482-1494

Another advantage of transpulmonary thermodilution devices is the calibrated estimation of CO with pulse contour analysis which is **perfect** for performing tests of fluid responsiveness, like the **passive leg raising** (PLR) or the **end-expiratory occlusion** test


A real-time and precise CO monitoring device is required

COVID-19 ARDS is characterized by higher extravascular lung water than non-COVID-19 ARDS: the PiCCOVID study

Rui Shi¹, Christopher Lai¹, Jean-Louis Teboul¹, Martin Dres^{3,4}, Francesca Moretto¹, Nello De Vita⁵, Tài Pham^{1,2}, Vincent Bonny^{3,4}, Julien Mayaux^{3,4}, Rosanna Vaschetto⁵, Alexandra Beurton^{3,4} and Xavier Monnet^{1*}

Crit Care (2021) 25:186

Conclusions

- Echocardiography should be performed asap in shock states as it is the best tool to assess cardiac function and it is non invasive
- But it is **not** a **monitoring** technique
- It should be performed in combination with other hemodynamic measurements, especially in complex shock states or in cases of associated severe ARDS, where more invasive technologies are often necessary to better assess hemodynamics and monitor the response to therapy

Merci