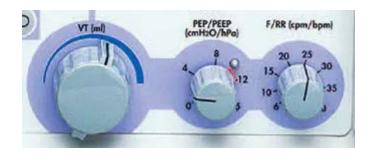
PERSONNALISER LA VENTILATION DU SDRA

Jean-Marie FOREL

Médecine Intensive Réanimation

Marseille

Pas de conflit d'intérêt


Personnaliser le traitement ventilatoire c'est quoi ?

1. Le bon traitement, au bon patient, au bon moment et à la bonne dose

- 2. Ventilation mécanique
 - Peut amplifier/créer lesions pulmonaires (VILI)
 - Peut être ajustée de façon à limiter VILI (et morbi-mortalité)
- 3. Comprendre la physiopathologie à l'echelle de l'individu peut aider à identifier celui qui va "répondre" au traitement

Personnaliser : quels paramètres ?

- Personnaliser le Vt
- Personnaliser la PEEP

Volume courant

RFE - Prise en charge du SDRA de l'adulte à la phase initale

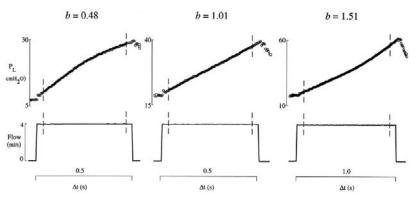
R2.1.1 – Il faut utiliser un faible volume courant autour de 6 ml/kg de poids prédit par la taille (PPT) comme première approche pour les patients ayant des SDRA reconnus, en l'absence d'acidose métabolique sévère, y compris avec SDRA léger, dans le but de diminuer la mortalité.

GRADE 1+, ACCORD FORT

Personnaliser le Vt = Repérer l'agression = ventilation **non** protectrice

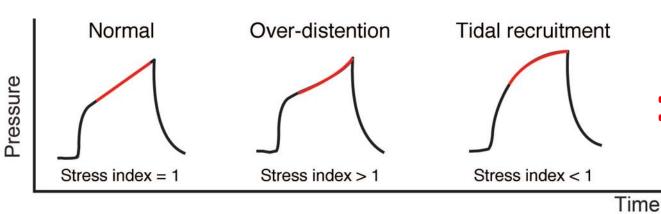
Bedside Assessment of Safety for VT Titration

Physiologic Variables	Mechanism	Threshold (cm H ₂ O)
Plateau pressure	Maximal pressure across the respiratory system at the end of tidal breath	28 (30)
	Static total mechanical stress and barotrauma	
Transpulmonary plateau pressure	Maximal pressure across the lung at the end of tidal breath	22-24
	Mechanical stress and barotrauma to the lung	
Driving pressure	Dynamic pressure change during tidal breath applied to the respiratory system	14 (15)
	Dynamic mechanical stress and strain	
Driving transpulmonary pressure	Dynamic pressure change during tidal breath applied to the lung	8–10
	Dynamic mechanical stress and strain to the lung	
Stress index	Worsening of respiratory system compliance during tidal breath	1
	Overdistension and barotrauma	

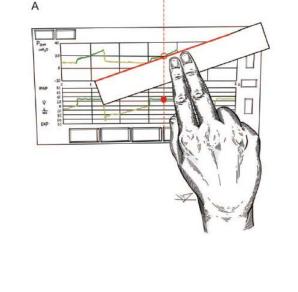

Mauri T. Critical Care Explorations: July 2021 - Volume 3 - Issue 7 - p e0486

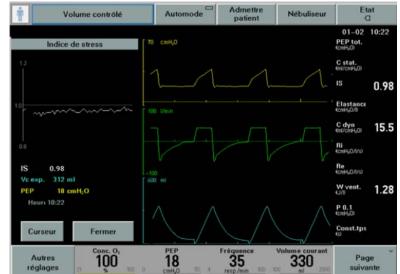
Pression de plateau

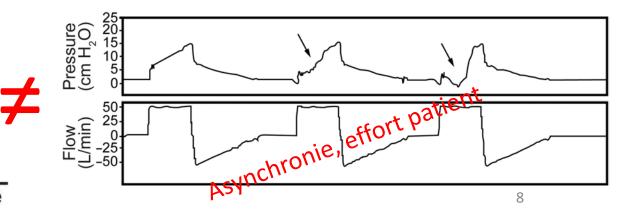
Bedside Assessment of Safety for VT Titration


Physiologic Variables	Mechanism	Threshold (cm H ₂ O)
Plateau pressure	Maximal pressure across the respiratory system at the end of tidal breath	28 (30)
	Static total mechanical stress and barotrauma	
	Pression (cmH ₂ 0) - Pression mesurée ventilateur - Pression alvéolaire	
	Pression de plateau débit nul	
	Débit (L/min)	
	Inspiration	7
	1 Temps (seconde)	

 $P_{L} = a \cdot t^{b} + c$


Fig. 8 Pressure-time (*P*-*t*) curves demonstrating the concept of using stress index to personalize PEEP. Using the power equation $P_L = a \cdot t^b + c$, *b* describes the shape of the *P*-*t* curve. When b < 1, the shape of the curve is a downward concavity as compliance increases over time. When b > 1, the curve has an upward concavity as compliance decreases over time. When b = 1, the *P*-*t* curve is straight and compliance is constant. Adjusting tidal volume (Vt) and PEEP so that b = 1 produces minimal lung stress, if b < 1 would produce low-lung volume stress [105]


Stress Index Can Be Accurately and Reliably Assessed by Visually Inspecting Ventilator Waveforms RESPIRATORY CARE • SEPTEMBER 2018 VOL 63 NO 9 Xiu-Mei Sun MSc, Guang-Qiang Chen MD, Kai Chen MD, Yu-Mei Wang MD, Xuan He MSc, Hua-Wei Huang MD, Xu-Ying Luo MD, Chun-Mei Wang MD, Zhong-Hua Shi MD, Ming Xu MD, Lu Chen MD, Eddy Fan MD PhD, and Jian-Xin Zhou MD



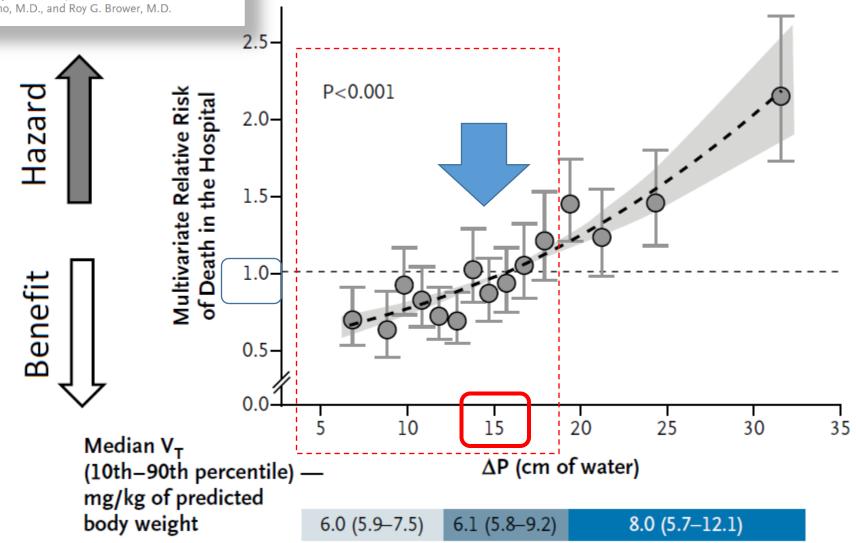
Stress Index


Ranieri VM, Zhang H, Mascia L, Aubin M, Lin CY, Mullen JB, Grasso S, Binnie M, Volgyesi GA, Eng P, Slutsky AS (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328

Pression motrice (Driving Pressure)

Reflet de la quantité de déformation cyclique du parenchyme imposée par un Vt Bedside Assessment of Safety for VT Titration

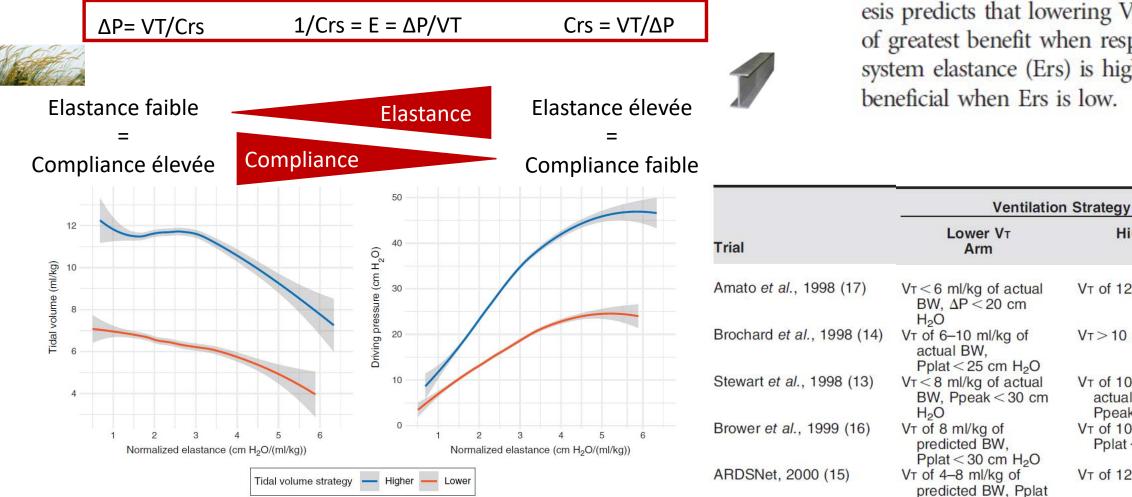
Physiologic Variables	Mechanism	Threshold (cm H ₂ O)
Driving pressure	Dynamic pressure change during tidal breath applied to the respiratory system	14 (15)
	Dynamic mechanical stress and strain	



Pression motrice = Signal d'alerte

- = Douleur des chaussures trop petites
- = Vt trop grand / Baby Lung SDRA

Driving Pressure and Survival in the Acute Respiratory Distress Syndrome


Marcelo B.P. Amato, M.D., Maureen O. Meade, M.D., Arthur S. Slutsky, M.D., Laurent Brochard, M.D., Eduardo L.V. Costa, M.D., David A. Schoenfeld, Ph.D., Thomas E. Stewart, M.D., Matthias Briel, M.D., Daniel Talmor, M.D., M.P.H., Alain Mercat, M.D., Jean-Christophe M. Richard, M.D., Carlos R.R. Carvalho, M.D., and Roy G. Brower, M.D. N Engl J Med 2015;372:747-55. DOI: 10.1056/NEJMsa1410639

Effect of Lowering VT on Mortality in Acute Respiratory Distress Syndrome Varies with Respiratory System Elastance

Ewan C. Goligher^{1,2,3*}, Eduardo L. V. Costa^{4,5*}, Christopher J. Yarnell^{1,2,6}, Laurent J. Brochard^{1,7‡}, Thomas E. Stewart⁸, George Tomlinson², Roy G. Brower⁹, Arthur S. Slutsky^{1,7}, and Marcelo P. B. Amato⁴

American Journal of Respiratory and Critical Care Medicine Volume 203 Number 11 | June 1 2021

(ARDS). The driving pressure hypothesis predicts that lowering VT will be of greatest benefit when respiratory system elastance (Ers) is high and less beneficial when Ers is low.

Higher VT

Arm

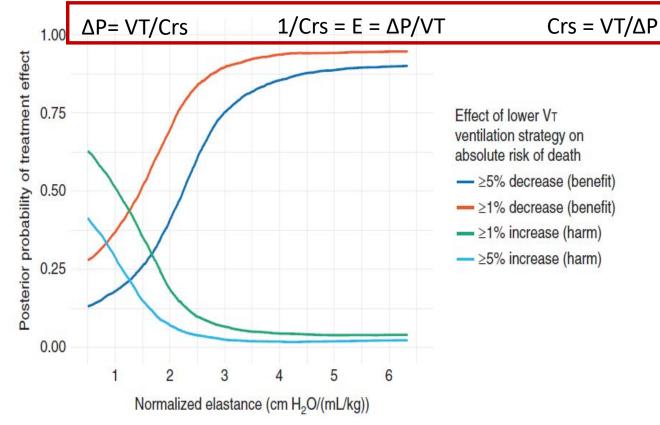
VT of 10-15 ml/kg of

Ppeak $\leq 50 \text{ cm H}_2\text{O}$

11

actual BW.

VT of 12 ml/kg


of 25-30 cm H₂O

VT of 10-12 ml/kg. Pplat < 55 cm H₂O

VT of 12 ml/kg

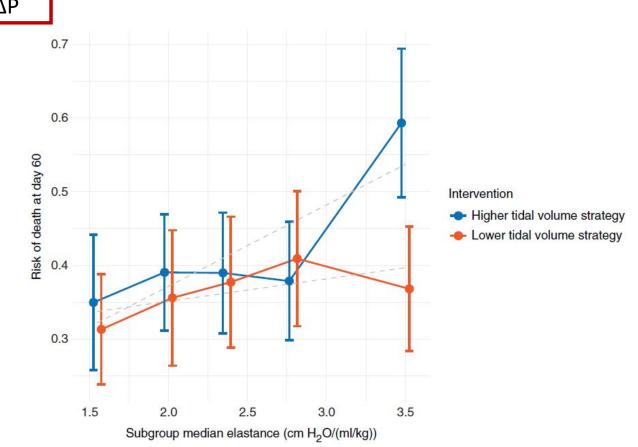

 $V_T > 10 \text{ ml/kg}$

Figure 1. VT and driving pressure according to respiratory system elastance and higher-versus lower-VT strategy. The shaded regions represent the standard errors.

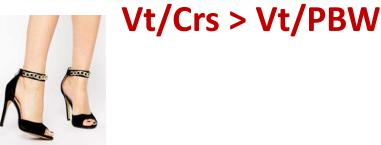
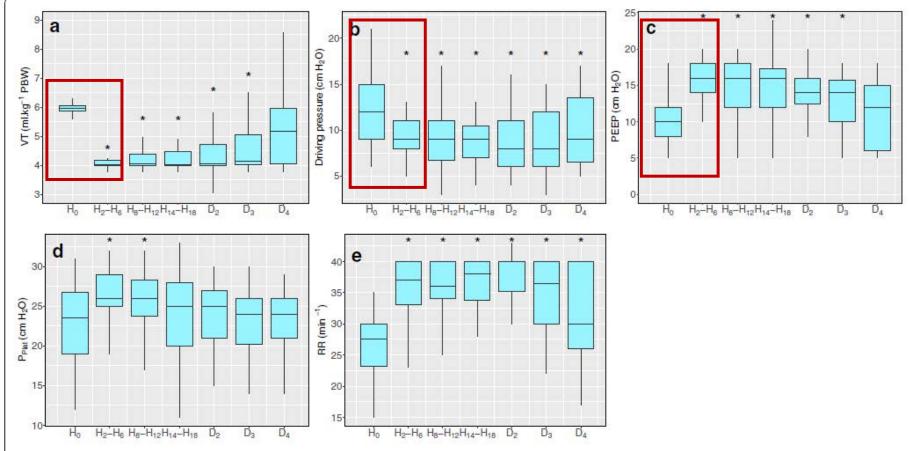


Figure 3. Posterior probabilities of various values of the treatment effect of a lower-V_T ventilation strategy on mortality according to respiratory system elastance. The lower panel

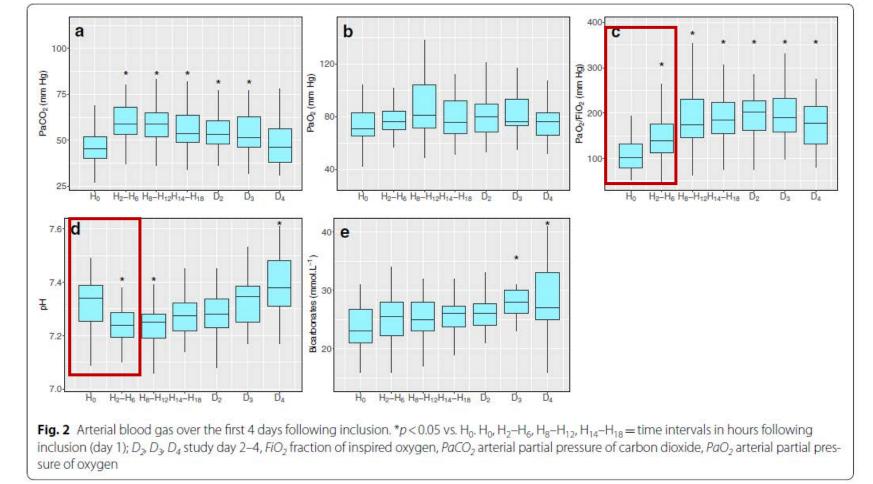
Vt reduction: mortality benefit was greater in patients with high elastance and comparatively low in patients with low elastance. This finding suggests that the adequacy of lung protection during mechanical ventilation should be assessed primarily in terms of driving pressure rather than VT.

Figure 4. Subpopulation Treatment Effect Pattern Plot analysis of the mortality benefit of a lower-VT ventilation strategy according to respiratory system elastance. The error bars represent 95% confidence intervals. Subgroups are plotted according to the median elastance value in each subgroup. The gray dashed lines represent a linear smooth fit onto the relationship between respiratory system elastance and mortality for the higher- and lower-VT strategy arms.

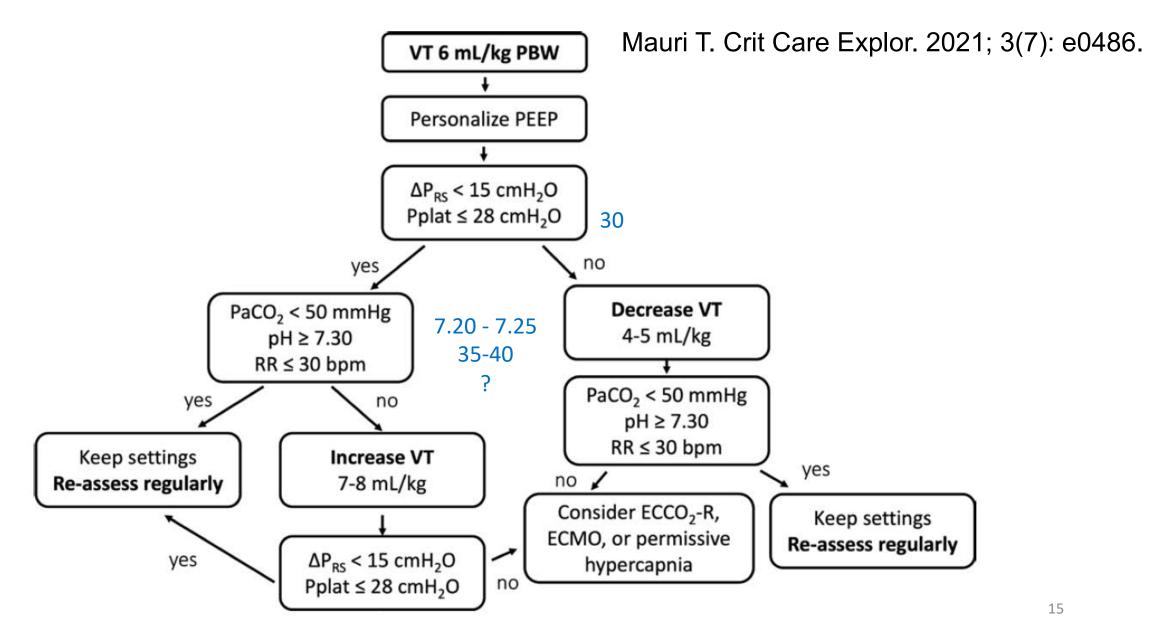

	27		
za	la	hn	
20	U	IU	

FR	UK	US	Taille (en cm)
36	3,5	Х	23
37	4	Х	23,6
38	5	Х	24,3

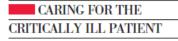
Feasibility and safety of ultra-low tidal volume ventilation without extracorporeal circulation in moderately severe and severe **ARDS** patients


Intensive Care Med (2019) 45:1590-1598 https://doi.org/10.1007/s00134-019-05776-x

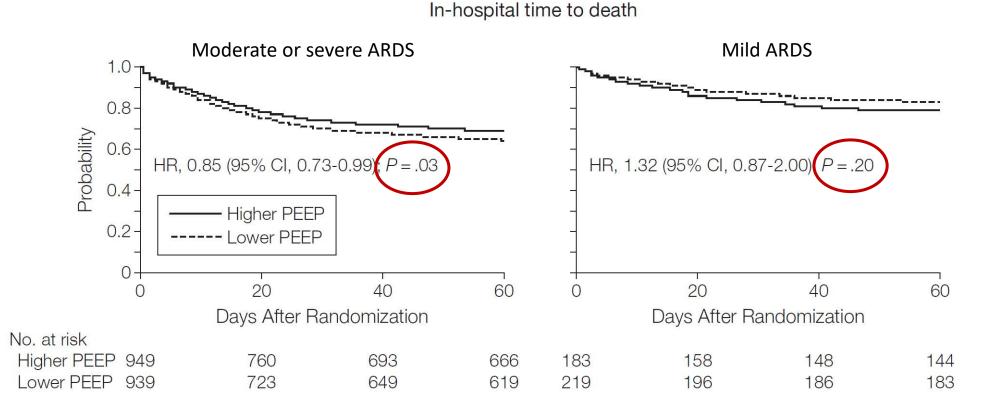
J. C. Richard^{1,2,3*}, S. Marque⁴, A. Gros⁵, M. Muller⁶, G. Prat⁷, G. Beduneau^{8,9}, J. P. Quenot¹⁰, J. Dellamonica¹¹, R. Tapponnier¹², E. Soum¹³, L. Bitker^{1,2,3}, J. Richecoeur¹⁴ and the REVA research network


Che

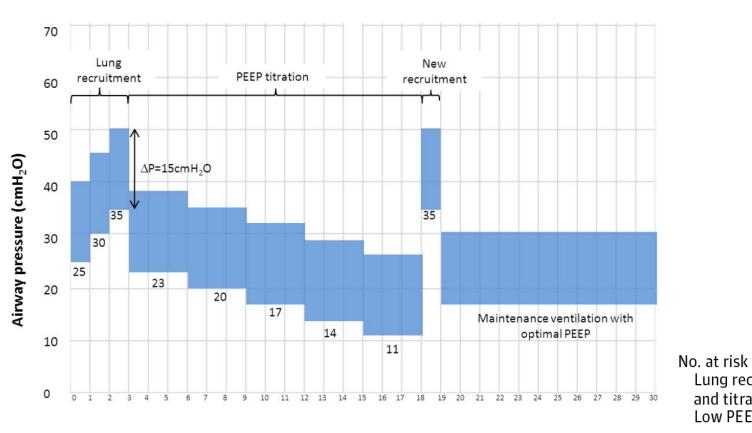
inclusion (day 1); D₂, D₃, D₄ = study day 2-4; PBW predicted body weight, PEEP positive end-expiratory pressure, P_{Plat} plateau pressure, RR respiratory rate, VT tidal volume


The main findings of the study are the following: (1) VT may be reduced down to 4 ml.kg⁻¹ in approximately 2/3 of moderately severe-to-severe ARDS patients, and to 5 ml.kg⁻¹ in approximately 90%. without ECCO2R, while targeting arterial pH above 7.20; (2) this strategy is associated with a 4 cmH₂O median decrease in ΔP 24 h after inclusion, at the price of substantial increase in RR and transient episodes of severe acidosis in approximately 1/3 of the patients

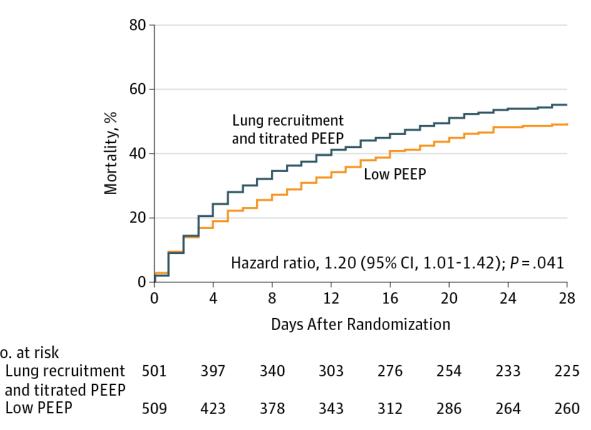
Personnaliser le Vt


Personnaliser la PEEP

= Evaluer la capacité de recrutement pulmonaire

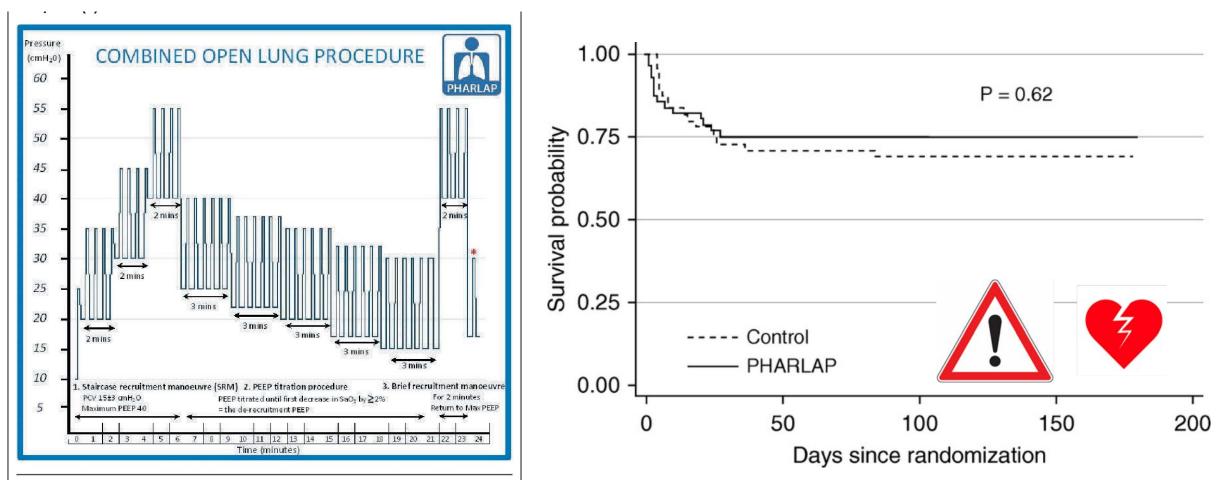


Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome Systematic Review and Meta-analysis


Briel *et al.* JAMA 2010

P/F ratio < 200 mmHg

Time (minutes)


JAMA. 2017 Oct 10; 318(14): 1335–1345.

Maximal Recruitment Open Lung Ventilation in Acute Respiratory Distress Syndrome (PHARLAP)

A Phase II, Multicenter Randomized Controlled Clinical Trial

Carol L. Hodgson^{1,2}, D. James Cooper¹, Yaseen Arabi^{3,4}, Victoria King¹, Andrew Bersten⁵, Shailesh Bihari⁵, Kathy Brickell⁶, Andrew Davies⁷, Ciara Fahey⁶, John Fraser⁸, Shay McGuinness⁹, Lynne Murray¹, Rachael Parke⁹, Eldho Paul¹, David Tuxen², Shirley Vallance², Meredith Young¹, and Alistair Nichol^{1,2,6}; on behalf of the PHARLAP Study Investigators^{*} and ANZICS Clinical Trials Group

American Journal of Respiratory and Critical Care Medicine Volume 200 Number 11 December 1 2019

Effects of higher PEEP and recruitment manoeuvres on mortality in patients with ARDS: a systematic review, meta-analysis, meta-regression and trial sequential analysis of randomized controlled trials

Ball et al. Intensive Care Medicine Experimental 2020, 8(Suppl 1):39 https://doi.org/10.1186/s40635-020-00322-2

Lorenzo Ball^{1,2,3*}, Ary Serpa Neto^{3,4}, Valeria Trifiletti¹, Maura Mandelli¹, Iacopo Firpo¹, Chiara Robba², Marcelo Gama de Abreu⁵, Marcus J. Schultz^{3,6,7}, Nicolò Patroniti^{1,2}, Patricia R. M. Rocco⁸, Paolo Pelosi^{1,2} and For the PROVE Network: PROtective Ventilation Network

	Interve	ntion	Co	ontrol				
Study	Events	Total E	Events	Total	Mortality	RR	95%-CI	Weight
Higher PEEP alone								
Brower 2004	76	276	68	273		1.11	[0.83; 1.46]	13.4%
Talmor 2008	5	30	12	31	· · · · · · · · · · · · · · · · · · ·	0.43	[0.17; 1.07]	1.9%
Mercat 2008	107	385	119	382		0.89	[0.72; 1.11]	17.7%
Subgroup	188	691	199	686		0.91	[0.68; 1.23]	33.1%
Heterogeneity: I ² = 53%	, $\tau^2 = 0.03$, μ	0 = 0.12						
Test for effect in subgrou	up: $z = -0.60$	p = 0.5	55)					
Higher PEEP and rec	ruitment n	nanoeu	vres					
Meade 2008	135	475	164	508		0.88	[0.73; 1.06]	20.2%
Huh 2009	12	30	9	27		1.20	[0.60; 2.39]	3.3%
Hodgson 2011	3	10	2	10		1.50	[0.32; 7.14]	0.7%
Kacmarek 2016	22	99	27	101		0.83	[0.51; 1.36]	5.9%
Cavalcanti 2017	277	501	251	509		1.12	[1.00; 1.26]	27.5%
Hodgson 2019	14	57	15	56		0.92	[0.49; 1.72]	3.9%
Subgroup		1172		1211	*	1.01	[0.89; 1.16]	61.4%
Heterogeneity: $I^2 = 17\%$								
Test for effect in subgrou	ip: <i>z</i> = 0.20 ((<i>p</i> = 0.84	4)					
Recruitment manoeu	vres alone							
Xi 2010	16	55	24	55	· · · · · · · · · · · · · · · · · · ·	0.67	[0.40; 1.11]	5.5%
Subgroup	16	55	24	55		0.67	[0.40; 1.11]	5.5%
Heterogeneity: not applie								
Test for effect in subgrou	p: z = -1.56	b(p = 0.7)	12)					
Random effects mod		1918		1952		0.96	[0.84; 1.09]	100.0%
Heterogeneity: I ² = 35%	$, \tau^2 = 0.01, \mu$	0 = 0.12]		
Test for overall effect: z =	= -0.68 (<i>p</i> =	0.50)			0.2 0.5 1 2	5		
Test for subgroup differe	nces: $\chi_2^2 = 2$.65, df =	2(p = 0)).27)	Favours intervention Favours control			

20

"one-size-fits-all" approach

ARMA ARDSnet NEJM 2000

ALVEOLI

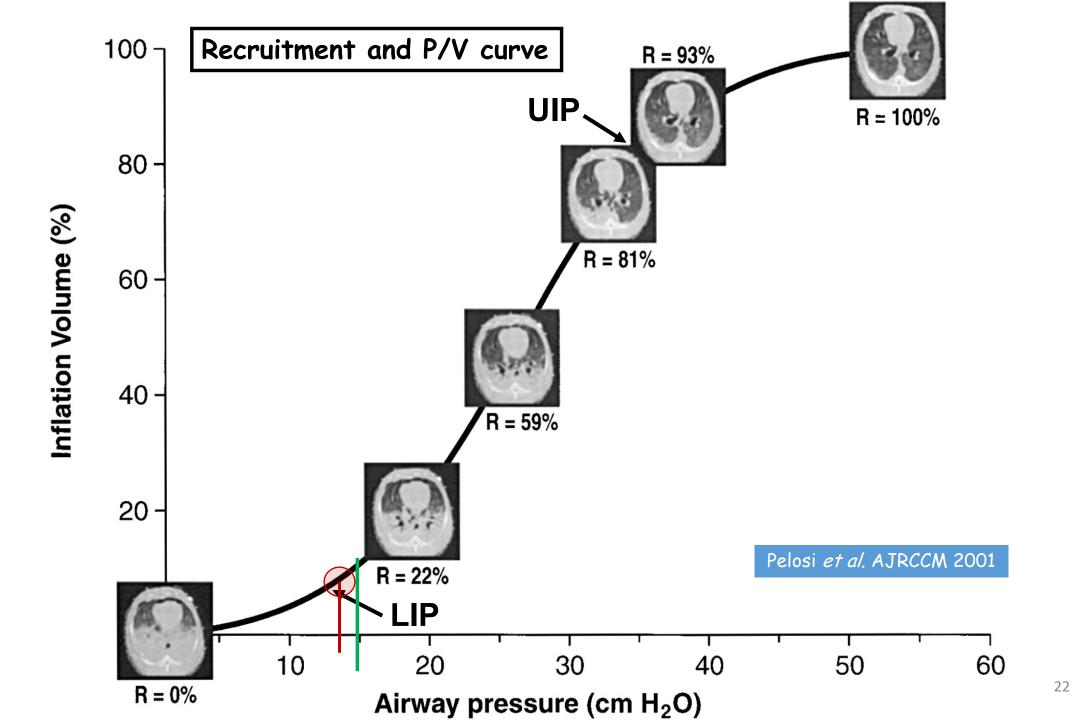
ARDSnet NEJM 2004

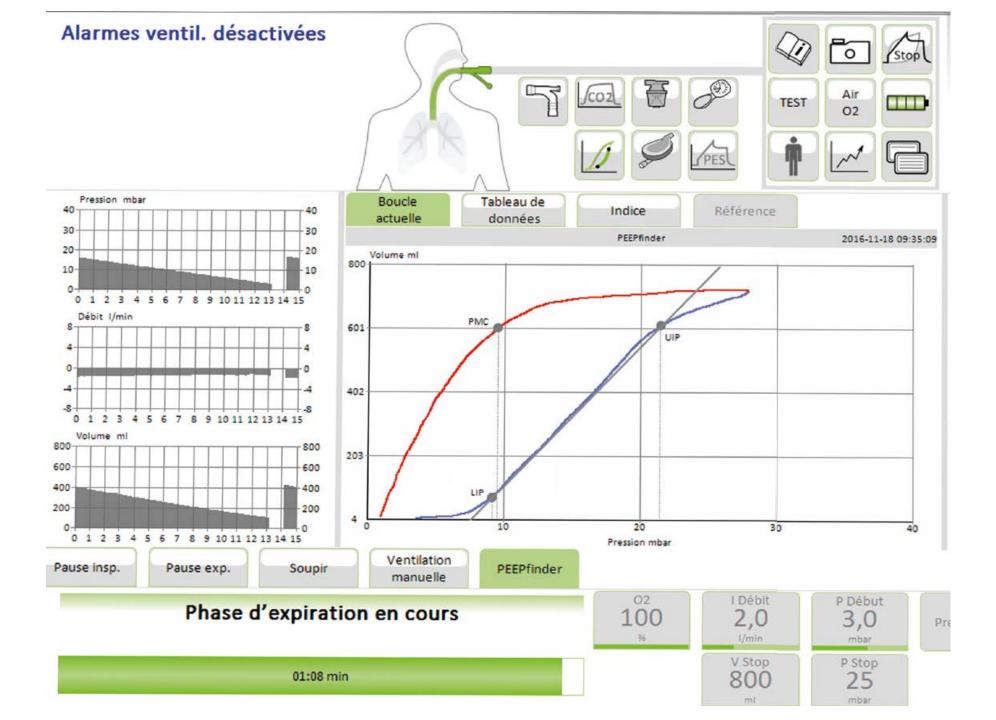
	1000										E.		and the second sec
Lower-PEEP group			_			_							
FiO ₂	0.3	0.4	0.4	0.5 0.	5 0.6	0.	7 0.7	0.7	0.8	0.9	0.9	0.9	1.0
PEEP	5	5	8	8 10	10	10	12	14	14	14	16	18	18-24
Higher-PEEP group (befor	re protocol chang	ged to i	use hig	her leve	ls of PE	EEP)							
FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5-0.8	0.8	0.9	1.0
PEEP	5	8	10	12	14	14	16	16	18	20	22	22	22–2
Higher-PEEP group (after	protocol change	d to us	e highe	er levels	of PEE	P)							
FiO ₂	0.3	0.3	0.4	0.4	0.5	0.5	0.5-0.8	0.8	0.9	1.0			
PEEP	12	14	14	16	16	18	20	22	22	22-24			

				Frac	tion of Insp	oired Oxygen	(FIO ₂)		
LOV		0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
LOV	Control PEEP ranges, cm H ₂ O	5	5-8	8-10	10	10-14	14	14-18	18-24
O'Meade <i>et al.</i> JAMA 2008	Lung open ventilation PEEP ranges, cm H ₂ O Before protocol change	5-10	10-14	14-20	20	20	20	20	20-24
	After protocol change	5-10	10-18	18-20	20	20	20-22	22	22-24

ExPress

Mercat et al. JAMA 2008


PEEPb


Minimal distension group^c

Increased recruitment group^d

Total PEEP between 5 and 9 cm H₂O

Plateau pressure between 28 and 30 cm H₂O

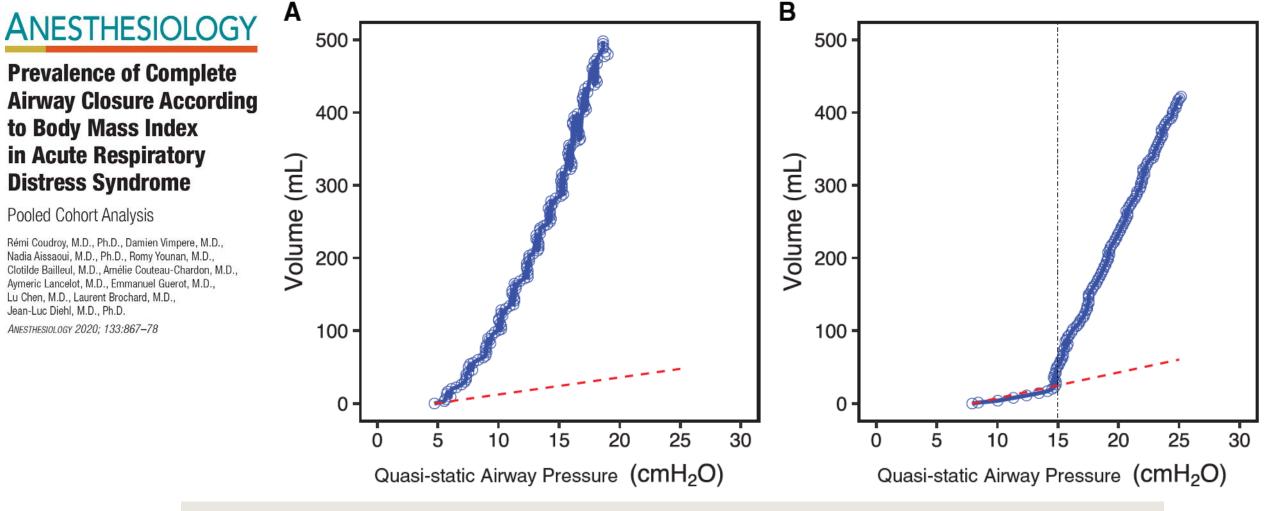
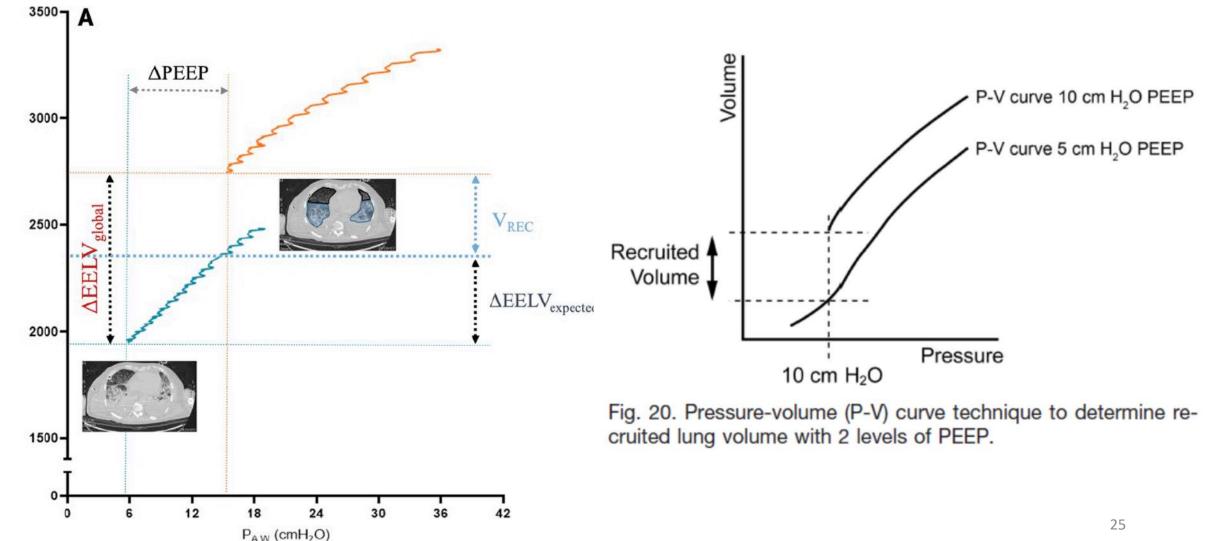
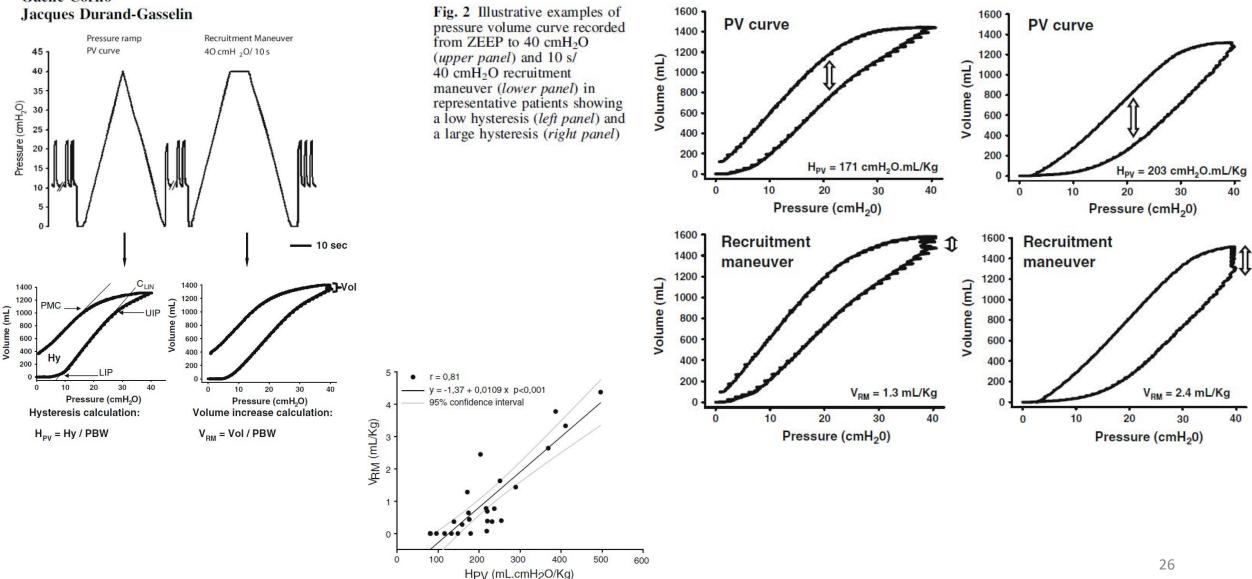



Table 2. Respiratory System Mechanics at Low PEEP According to Body Mass Index and Respective to Airway Closure Consideration


			Body Mass Index		
	Pooled Cohort (n = 51)	< 30 kg/m² (n = 18)	≥ 30 and < 40 kg/m² (n = 16)	≥ 40 kg/m² (n = 17)	<i>P</i> Value
PEEP set, cm H ₂ O	5 (5–6)	5 (5–5)	5 (5–8)	5 (5–5)	0.219
Complete airway closure, n (%) Airway opening pressure, cm H ₂ 0	21 (41%) 9.6 (8.5–13.2)	4 (22%) 9.7 (9.2–12.2)	6 (38%) 12.5 (7.5–16.7)	11 (65%) 9.6 (8.8–10.7)	0.036 0.836

Personalized Positive End-Expiratory Pressure and Tidal Volume in Acute Respiratory Distress Syndrome: Bedside Physiology-Based Approach

Mauri T. Crit Care Explor. 2021; 3(7): e0486.

Didier Demory Jean-Michel Arnal Marc Wysocki Stéphane Donati Isabelle Granier Gaëlle Corno Jacques Durand-Gasselin

Recruitability of the lung estimated

in ARDS patients

by the pressure volume curve hysteresis

Demory, Arnal et al. Intensive Care Med 2008

Recruitment-to-inflation ratio (R/I)

Beloncle et al. Ann. Intensive Care (2020) 10:55 https://doi.org/10.1186/s13613-020-00675-7

Annals of Intensive Care

RESEARCH

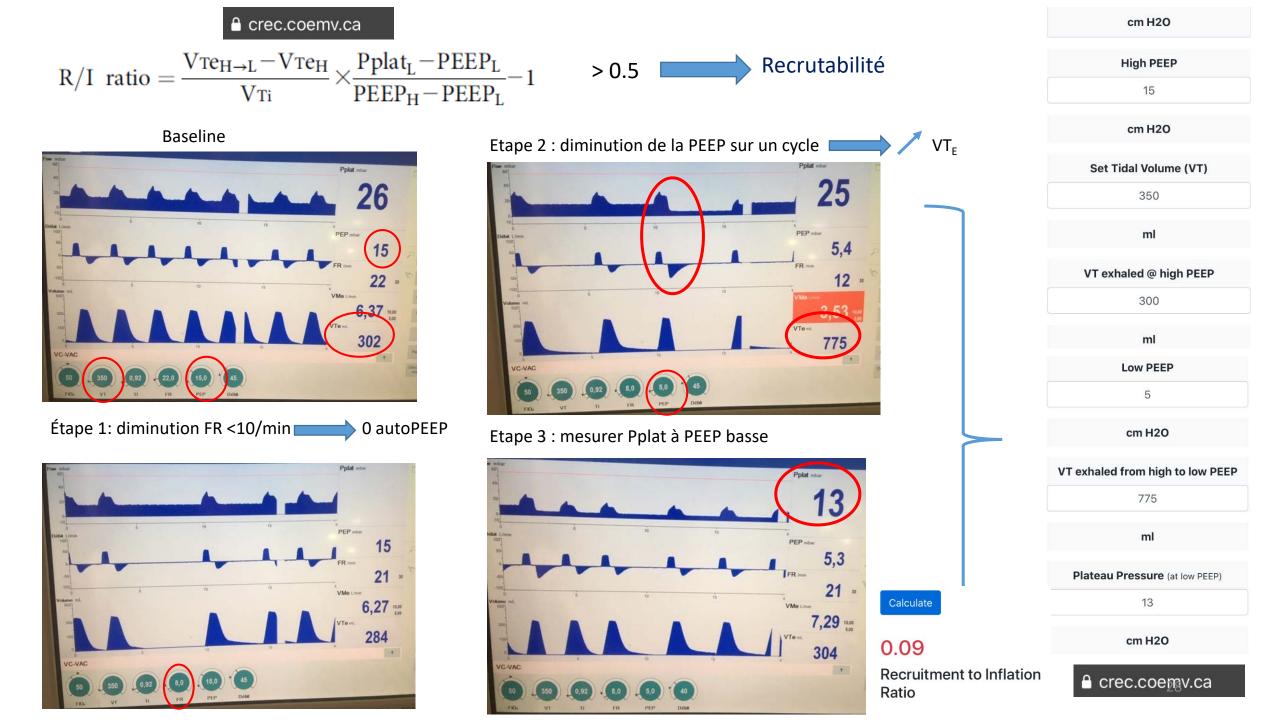
Recruitability and effect of PEEP in SARS-Cov-2-associated acute respiratory distress syndrome

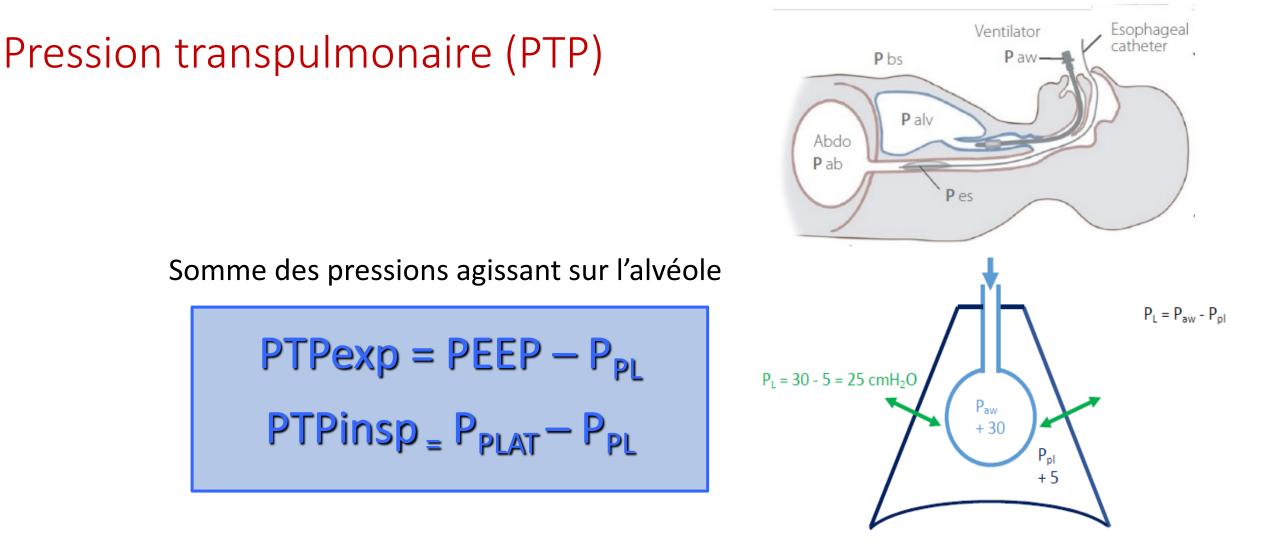
François M. Beloncle^{1*}⁽⁶⁾, Bertrand Pavlovsky¹, Christophe Desprez¹, Nicolas Fage¹, Pierre-Yves Olivier¹, Pierre Asfar¹, Jean-Christophe Richard^{1,2} and Alain Mercat¹

Lung Recruitability in COVID-19–associated Acute Respiratory Distress Syndrome: A Single-Center Observational Study

Chun Pan, M.D.

American Journal of Respiratory and Critical Care Medicine Volume 201 Number 10 | May 15 2020

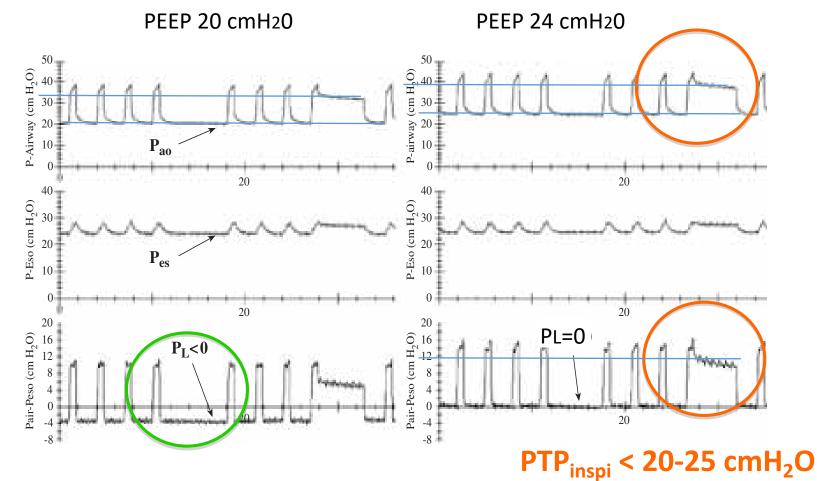

Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial.


Chen L, Del Sorbo L, Grieco DL, Junhasavasdikul D, Rittayamai N, Soliman I, Sklar MC, Rauseo M,

Ferguson ND, Fan E, Richard JM, Brochard L.

Am J Respir Crit Care Med. 2020 Jan 15;201(2):178-187. doi: 10.1164/rccm.201902-0334OC.

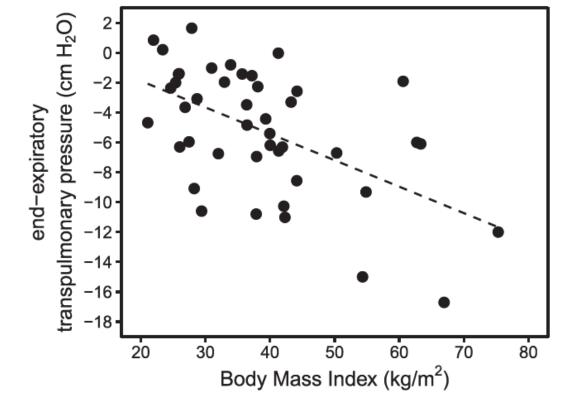
Methods: Patients with acute respiratory distress syndrome were ventilated at 15 and 5 cm H₂O of PEEP. Multiple pressure–volume curves were compared with a single-breath technique. Abruptly releasing PEEP (from 15 to 5 cm H₂O) increases expired volume: the difference between this volume and the volume predicted by compliance at low PEEP (or above airway opening pressure) estimated the recruited volume by PEEP. This recruited volume divided by the effective pressure change gave the compliance of the recruited lung; the ratio of this compliance to the compliance at low PEEP gave the recruitment-toinflation ratio. Response to PEEP was compared between high and low recruiters based on this ratio.



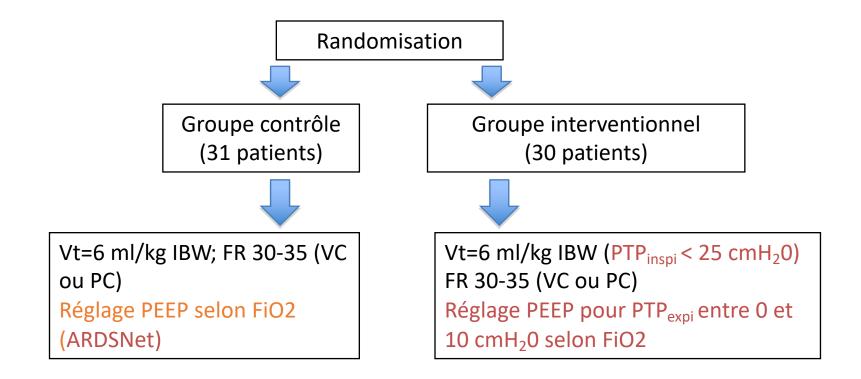
PTP= pression de distension alvéolaire

• Prévenir l'atelectrauma • Optimiser le recrutement, limiter

surdistension


ANESTHESIOLOGY

Prevalence of Complete Airway Closure According to Body Mass Index in Acute Respiratory Distress Syndrome


Pooled Cohort Analysis

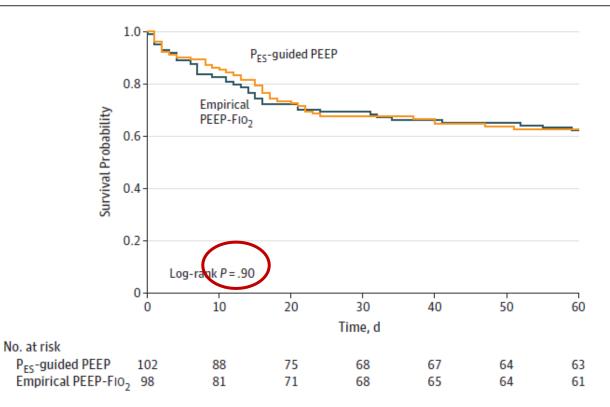
Rémi Coudroy, M.D., Ph.D., Damien Vimpere, M.D., Nadia Aissaoui, M.D., Ph.D., Romy Younan, M.D., Clotilde Bailleul, M.D., Amélie Couteau-Chardon, M.D., Aymeric Lancelot, M.D., Emmanuel Guerot, M.D., Lu Chen, M.D., Laurent Brochard, M.D., Jean-Luc Diehl, M.D., Ph.D.

ANESTHESIOLOGY 2020; 133:867–78

Fig. 3. Relationship between individual values of end-expiratory transpulmonary pressure considering complete airway closure at low positive end-expiratory pressure and body mass index (Spearman $\rho = -0.52$ [95% Cl, -0.72 to -0.28]). The *dotted line* represents the regression line (end-expiratory transpulmonary pressure = $1.65 - 0.18 \times \text{body}$ mass index; $R^2 = 0.28$; P < 0.001).

Esophagea	l-Pressu	re-Guid	ed Group	D										
FIO ₂	0.4	0.5	0.5	0.6	0.6	0.	7	0.7	0.8	0.8	0.9	0.9	1.0	
P _{Lexp}	0	0	2	2	4	4		6	6	8	8	10	10	
Control Gr	oup													
FIO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.9	0.9	0.9	
PEEP	5	5	8	8	10	10	10	12	14	14	14	16	18	

Measurement	I	Baseline			72 Hr†	
	Esophageal- Pressure–Guided (N = 30)	Conventional Treatment (N = 31)	P Value	Esophageal- Pressure–Guided (N=29)	Conventional Treatment (N=29)	P Value
$PaO_2:FiO_2$	147±56	145±57	0.89	280±126	191±71	0.002
Respiratory-system compliance (ml/cm of water)	36±12	36±10	0.94	45±14	35±9	0.005
Ratio of physiological dead space to tidal volume	0.67±0.11		0.95	0.61±0.09	0.64±0.10	0.27
PaO₂ (mm Hg)	91±25		0.09	124±44	101±33	0.03
FIO ₂	0.66±0.17	0.77±0.18	0.02	0.49±0.17	0.57±0.18	0.07
PEEP (cm of water)	13±5	13±3	0.73	17±6	10±4	<0.001
Tidal volume (ml)	484±98	491±105	0.80	472±98	418±80	0.03
Tidal volume (ml per kg of predicted body weight)	7.3±1.3		0.12	7.1 ±1.3	6.8±1	0.31
Respiratory rate (breaths/min)	26±6		0.32	26±6	28±5	0.20
Inspiratory time (sec)	0.8±0.1		0.19	0.8±0.1	0.8±0.1	0.27
PEEP _{total} (cm of water)	14±5		0.67	18±5	12±5	< 0.001
Peak inspiratory pressure (cm of water)	35±8		0.85	32±8	28±7	0.007
Mean airway pressure (cm of water)	20+6	20+4	0.88	22+6	16+5	0.001
Plateau pressure (cm of water)	29±7		0.79	28±7	25±6	0.07
Transpulmonary end-inspiratory pressure (cm of water)	7.9±6.0		0.61	7.4±4.4	6.7±4.9	0.58
Transpulmonary end-expiratory pressure (cm of water)	-2.8±5.0	-1.9±4.7	0.49	0.1±2.6	-2.0±4.7	0.06
Esophageal end-inspiratory pressure (cm of water)	21.2±4.9	20.7±5.1	0.68	21.7±7.2	17.9±5.2	0.03
Esophageal end-expiratory pressure	17.2±4.4		0.79	18.4±5.9	14.3±4.9	0.008


Talmor et al. NEJM 2008;359:2095

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

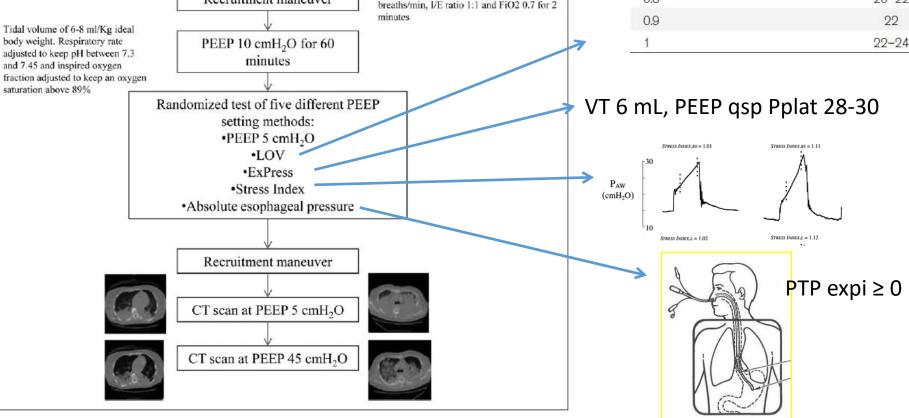
Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure–Guided Strategy vs an Empirical High PEEP-FIO₂ Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome A Randomized Clinical Trial

Jeremy R. Beitler, MD, MPH; Todd Sarge, MD; Valerie M. Banner-Goodspeed, MPH; Michelle N. Gong, MD, MSc; Deborah Cook, MD; Victor Novack, MD, PhD; Stephen H. Loring, MD; Daniel Talmor, MD, MPH; for the EPVent-2 Study Group

Figure 3. Kaplan-Meier Survival Analysis Through Day 60

JAMA February 2019; DOI:10.1001/jama.2019.0555

Bedside Selection of Positive End-Expiratory Pressure in Mild, Moderate, and Severe Acute Respiratory Distress Syndrome


Davide Chiumello, MD^{1,2}; Massimo Cressoni, MD²; Eleonora Carlesso, MSc²; Maria L. Caspani, MD¹; Antonella Marino, MD²; Elisabetta Gallazzi, MD²; Pietro Caironi, MD^{1,2}; Marco Lazzerini, MD³; Onnen Moerer, MD⁴; Michael Quintel, MD⁴; Luciano Gattinoni, MD, FRCP^{1,2}

51 ALI/ARDS patients

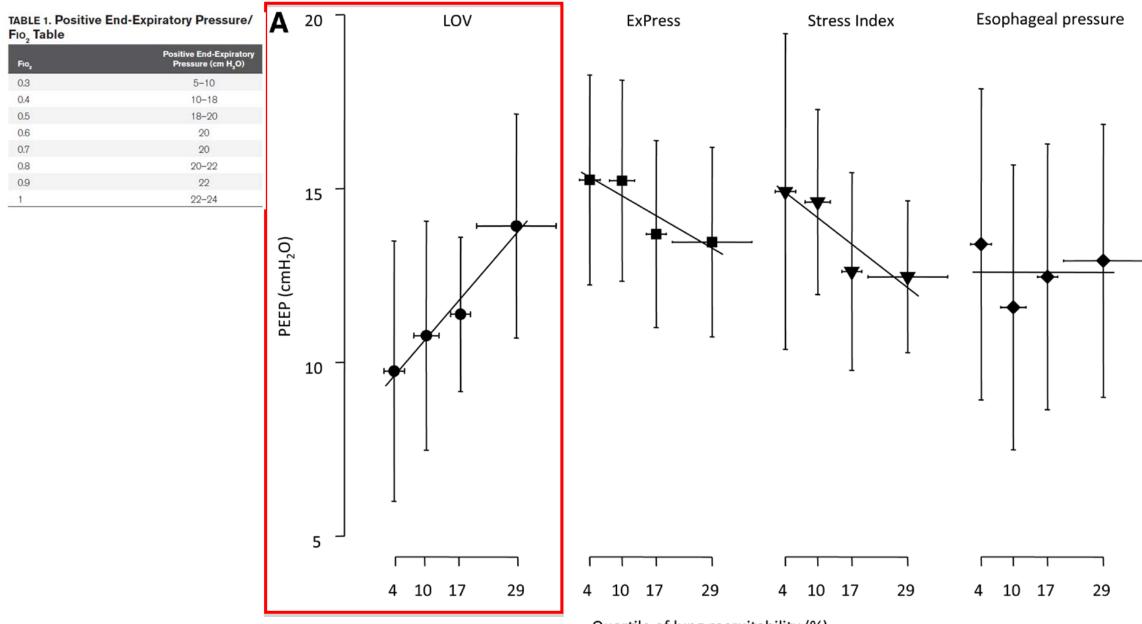
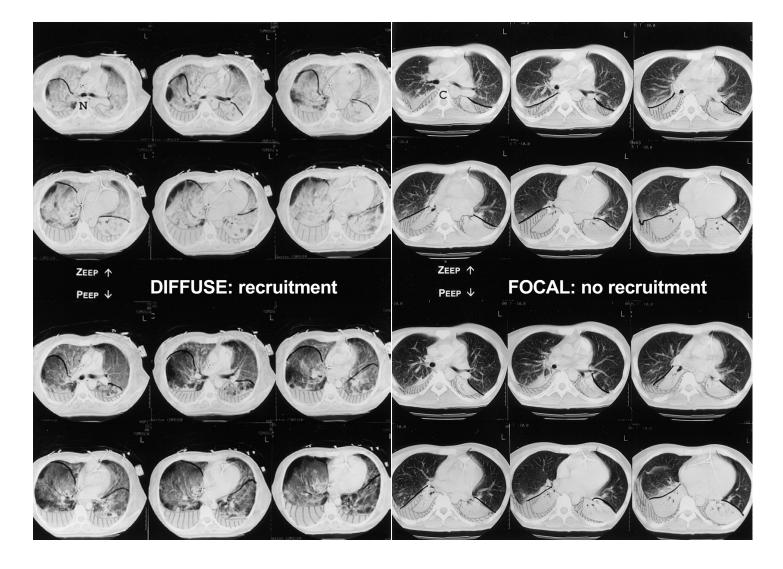

Recruitment maneuver

TABLE 1. Positive End-Expiratory Pressure/ FIO, Table

Fio ₂	Positive End-Expiratory Pressure (cm H ₂ O)
0.3	5–10
0.4	10-18
0.5	18–20
0.6	20
0.7	20
0.8	20-22
0.9	22
1	22-24

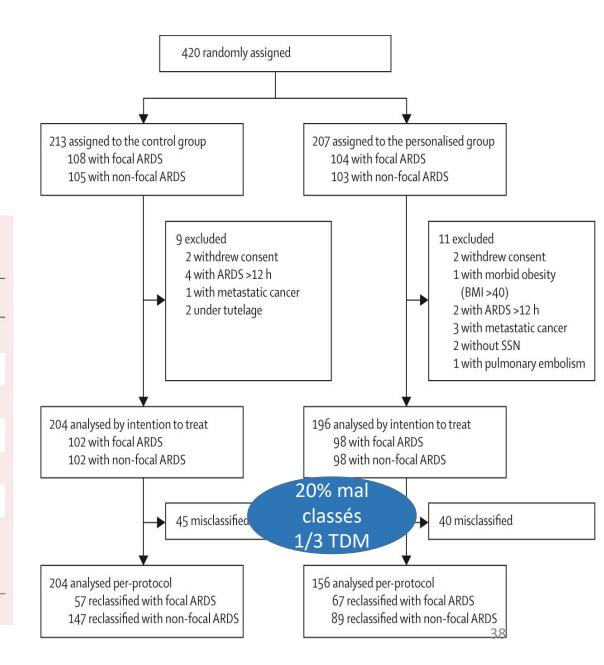

Pressure-control: PEEP 5 cmH₂O, plateau pressure 45 cmH₂O, respiratory rate 10

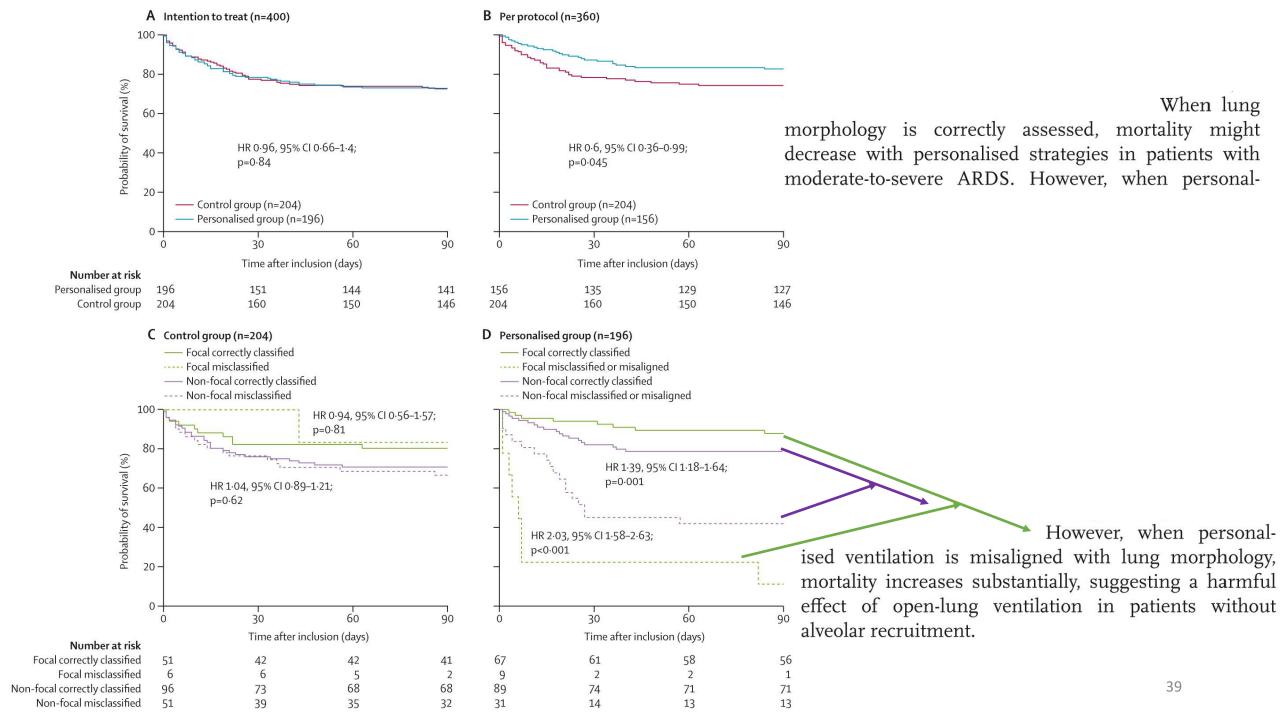
Quartile of lung recruitability (%)

Imagerie

ZEEP

Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial

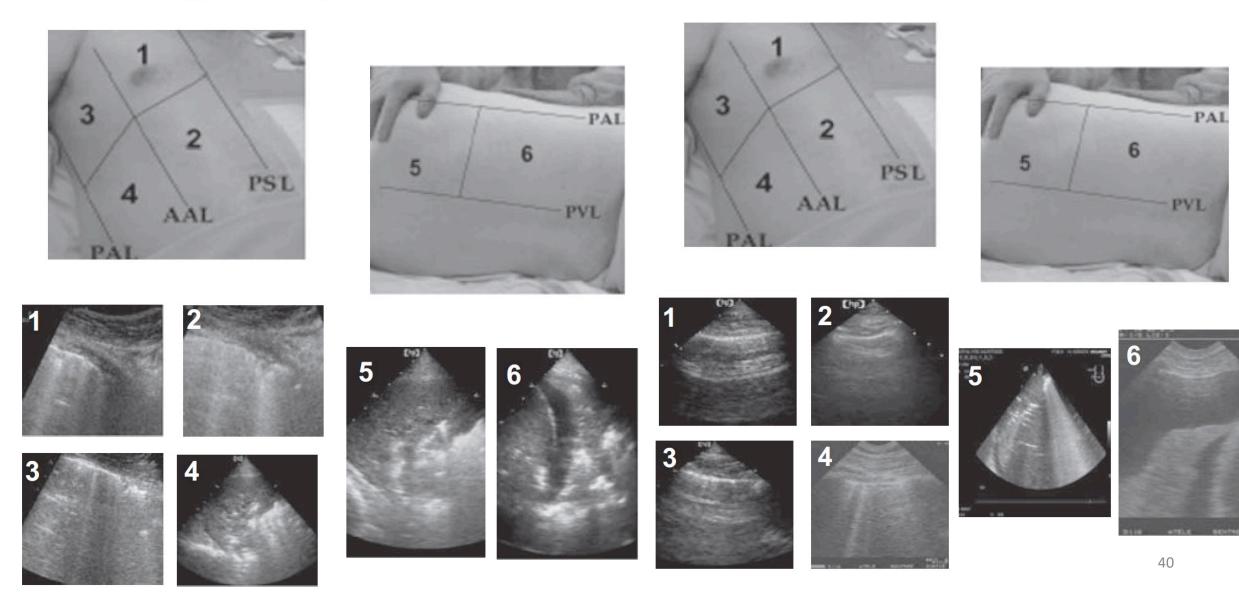

Jean-Michel Constantin, Matthieu Jabaudon, Jean-Yves Lefrant, Samir Jaber, Jean-Pierre Quenot, Olivier Langeron, Martine Ferrandière, Fabien Grelon, Philippe Seguin, Carole Ichai, Benoit Veber, Bertrand Souweine, Thomas Uberti, Sigismond Lasocki, François Legay, Marc Leone, Nathanael Eisenmann, Claire Dahyot-Fizelier, Hervé Dupont, Karim Asehnoune, Achille Sossou, Gérald Chanques, Laurent Muller, Jean-Etienne Bazin, Antoine Monsel, Lucile Borao, Jean-Marc Garcier, Jean-Jacques Rouby, Bruno Pereira, Emmanuel Futier, for the AZUREA Network*

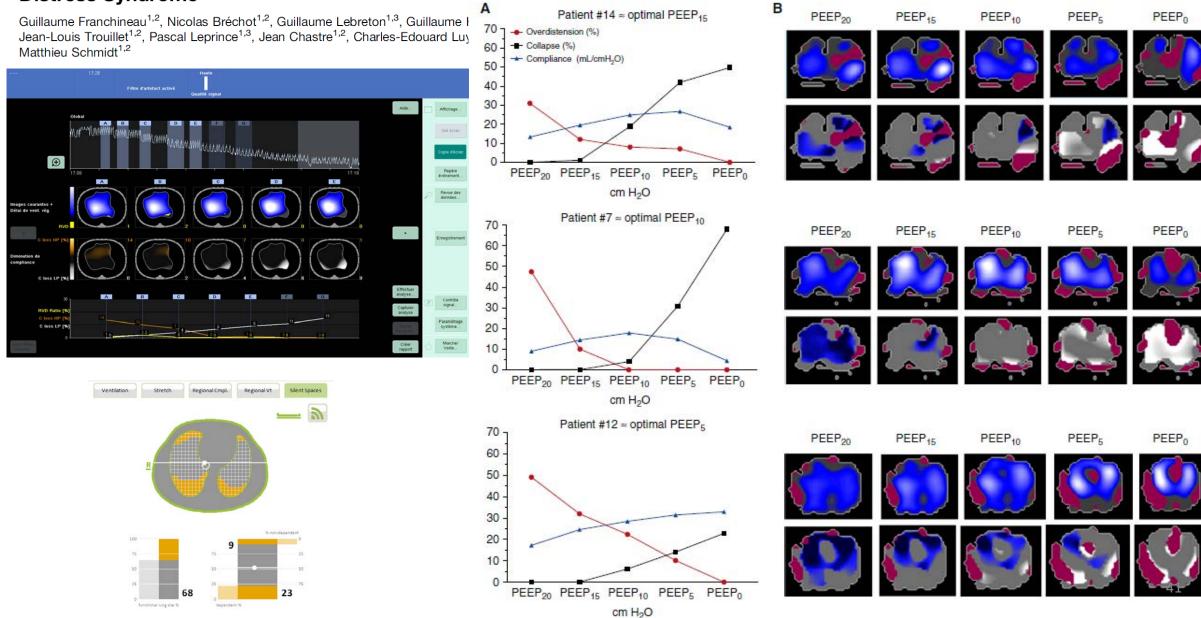

	Control group (n=204)	Personalised group (n=196)	
		Focal lung morphology	Non-focal lung morphology
Mode of ventilation	Volume control	Volume control	Volume control
Tidal volume	6 mL/kg IBW	8 mL/kg IBW	6 mL/kg IBW
PEEP	PEEP/FiO2	5–9 cm H₂O	To reach Pplat of 30 cm H₂O
PEEP-PSV	Free	5–9 cm H₂O	≥10 cm H₂O
Recruitment manoeuvre	Rescue	Rescue	Mandatory
Prone position	Encouraged	Mandatory	Rescue

IBW=ideal body weight. PEEP=positive-end expiratory pressure. FiO₂=fraction of inspired oxygen. Pplat=end-inspiratory plateau pressure. PEEP-PSV=positive-end expiratory pressure used during pressure support ventilation.

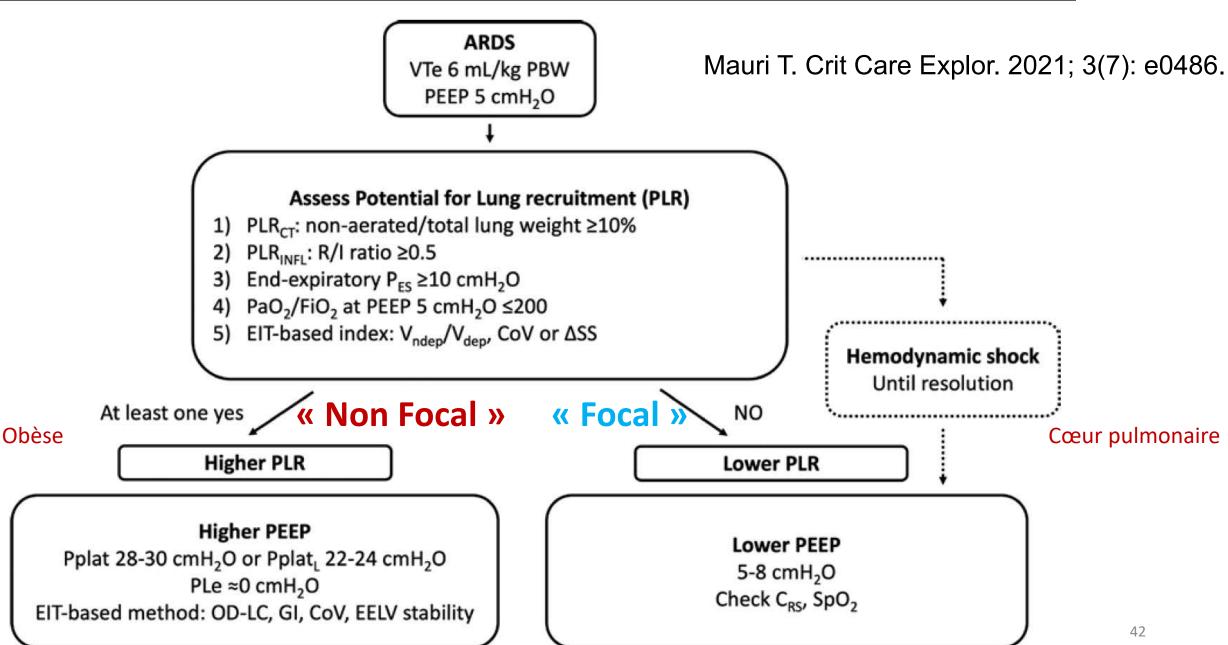
Table 1: Summary of ventilator settings according to lung morphology and randomisation group

Lancet Respiratory medicine, 2019, 7 (10),870-880




Utilisation des ultra-sons

Diffuse loss of aeration


Focal loss of aeration

Bedside Contribution of Electrical Impedance Tomography to Setting Am J Respir Crit Care Med Vol 196, Iss 4, pp 447–457, Aug 15, 2017 Positive End-Expiratory Pressure for Extracorporeal Membrane Oxygenation–treated Patients with Severe Acute Respiratory Distress Syndrome

Personnaliser la PEEP

Crédit photo Robina Weermeijer / Unsplash

Accueil > Actualités

Un logiciel pour personnaliser la ventilation des malades atteints de syndrome de détresse respiratoire aigüe

Le syndrome de détresse respiratoire aiguë (SDRA), qui peut être un des

résultats, entre autres, du Covid-19, nécessite une ventilation mécanique

Cependant, des réglages ventilatoires inadéquats peuvent aggraver les

(CREATIS - CNRS/Inserm/Université Claude Bernard Lyon 1/Université

Jean Monnet/INSA Lyon) permet d'analyser semi-automatiquement des images de scanner afin d'adapter au plus juste la ventilation aux besoins du

lésions pulmonaires du SDRA. Un logiciel développé par le Centre de

Recherche en Acquisition et Traitement d'Images pour la Santé 🛛

pour contrôler l'hypoxémie (diminution de quantité d'oxygène dans le sang).

22 avril 2020

patient.

RÉSULTATS SCIENTIFIQUES IMAGE

A - / A+

Contact(s)

Imprimer

<u>Jean-Christophe Richard</u> <u>Maciej Orkisz</u> Eduardo E. Dávila Serrano

Partager ce contenu

Le syndrome de détresse respiratoire aiguë (SDRA) est une forme particulièrement grave d'insuffisance respiratoire aiguë. La prise en charge thérapeutique repose actuellement sur le traitement de la cause du SDRA, et sur la ventilation mécanique avec une pression expiratoire positive (PEP) pour tenter de contrôler l'hypoxémie. Or il a été démontré à de multiples reprises

Contact

🖂 iean-

lyon.fr

A Jean-Christophe Richard PUPH à l'Université de Lyon 1 et membre de CREATIS

christophe.richard@creatis.insa-

😤 Maciej Orkisz

Professeur à l'Université de Lyon 1 et membre de CREATIS

🖾 maciej.orkisz@creatis.insa-lyon.fr

Reduardo E. Dávila Serrano Ingénieur d'études à CREATIS

eduardo.davila@creatis.insa-lyon.fr

Restez informé avec l'INS2I

Découvrez les actualités de l'Institut des sciences de l'information et de leurs interactions

Découvrir les actualités 🔶

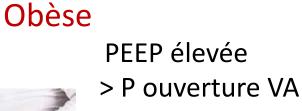
3 points à retenir

1. Volume courant

- Vt = 6 ml/Kg PBW
- Pression motrice = Vt / Compliance RS
- Si Pplat > 28-30 et/ou ΔP > 14-15 cmH₂0

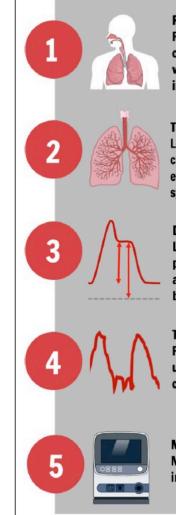
2. PEEP_{SDRA}

- PEEPmini 5-8 cmH₂O
- Evaluer Recrutabilité par la technique que l'on maitrise
- Au minimum Focal (PEEP 5-8) vs Diffus (PEEP QSP Pplat 28-30)
- Au minimum Table PEEP/FIO₂
- PEEP ou Vt changé = Pplat mesurée


3. Choc, cœur pulmonaire

PEEP 5-8 cmH₂O

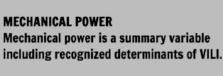
PTP expi > 0 (Poeso)



Personalized mechanical ventilation in acute respiratory distress syndrome

Paolo Pelosi^{1,2*}, Lorenzo Ball^{1,2}, Carmen S. V. Barbas^{3,4}, Rinaldo Bellomo^{5,6,7,8,9}, Karen E. A. Burns^{10,11}, Sharon Einav¹², Luciano Gattinoni¹³, John G. Laffey¹⁴, John J. Marini¹⁵, Sheila N. Myatra¹⁶, Marcus J. Schultz^{17,20,21}, Jean Louis Teboul¹⁸ and Patricia R. M. Rocco¹⁹

(2021) 25:250 Pelosi et al. Crit Care https://doi.org/10.1186/s13054-021-03686-3



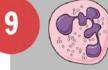
RATIONALE Regulate ventilatory parameters based on close monitoring of targeted physiologic variables, intervention responses and individual integrated goals.

TIDAL VOLUME Low V_T (4-6 ml/Kg PBW) is a standard of care. Personalized targeting requires evaluation of EELV and IC, AI and closed-loop systems may provide better monitoring.

DRIVING AND PLATEAU PRESSURE Low $\triangle P$ (< 13 cmH₂0) is a target in most patients. ΔP could help individualize V_T and PEEP levels. PPLAT should be kept below 27 cmH₂0.

TRANSPULMONARY PRESSURE P_L estimated on esophageal pressure can be used to titrate ventilation, but requires correct physiological interpretation.

8


ALVEOLAR RECRUITMENT The identification of recruitable patients and estimation of recruitment are essential to individualize recruitment strategies.

GAS-EXCHANGE

Gas-exchange including oxygenation is commonly targeted to set ventilation. However, dead space, ventilatory ratio and oxygen transport should be considered.

LUNG IMAGING

Computed tomography remains the gold standard. Lung ultrasound and electrical impedance tomography are promising bedside tools.

Patient stratification according to biological phenotypes is promising, but translation into clinical practice requires further research.

LIMITS OF PHYSIOLOGICAL GAIN When applying physiological manipulations, clinicians should consider the uncertainty surrounding their effect on patient-centered outcomes

PHENOTYPES