25° congrès francophone ACTUALITÉS EN RÉANIMATION

Médecine Intensive, Surveillance Continue et Urgences Graves

Ventilation Mécanique et Diaphragme

Martin Dres

Sorbonne Université, INSERM, UMRS1158
Neurophysiologie Respiratoire Expérimentale et Clinique

AP-HP. Sorbonne Université
Groupe Hospitalier Universitaire Pitié-Salpêtrière

Medical ICU

Paris - France

Lungpacer (expertise fees, travel expenses)

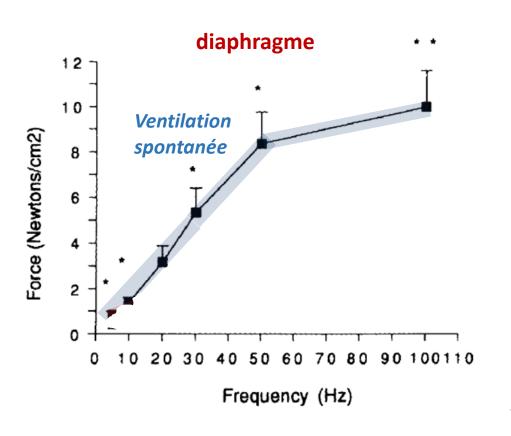
Dräger (congress)

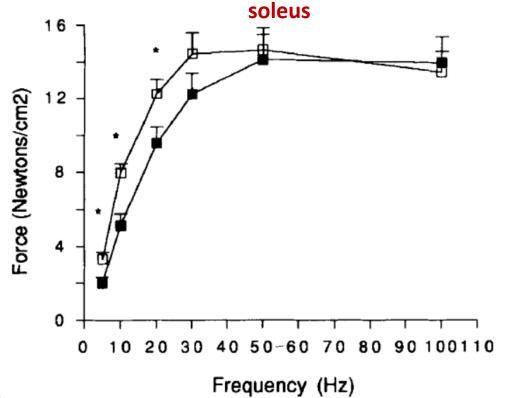
Bioserenity (research contract)

Diaphragm dysfunction: causes and consequences

If the story was simple...

In the ICU Mechanical Ventilation Disuse Excessive unloading ventilation-induced diaphragm dysfunction Diaphragm dysfunction


Thomas Pesquet "va vraiment bien"

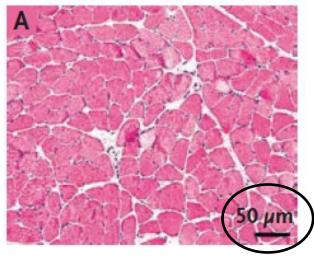

Le médecin de l'astronaute français juge spectaculaire la vitesse à laquelle il récupère de ses 6 mois dans l'espace. Interview. Source AFP

Effects of Mechanical Ventilation on Diaphragmatic Contractile Properties in Rats

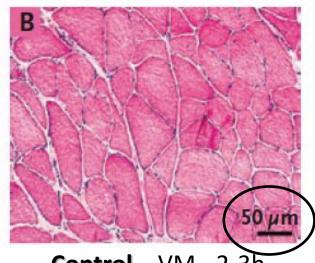
GENEVIEVE LE BOURDELLES, NAÏMA VIIRES, JORGE BOCZKOWSKI, NATHALIE SETA, DRAGAN PAVLOVIC, and MICHEL AUBIER

Diaphragm dysfunction: causes and consequences

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812

MARCH 27, 2008

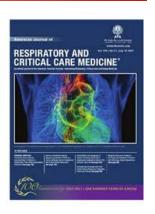

VOL. 358 NO. 13

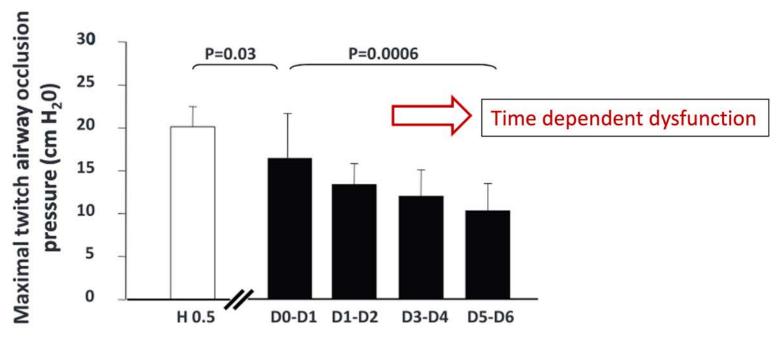
Rapid Disuse Atrophy of Diaphragm Fibers in Mechanically Ventilated Humans

Sanford Levine, M.D., Taitan Nguyen, B.S.E., Nyali Taylor, M.D., M.P.H., Michael E. Friscia, M.D., Murat T. Budak, M.D., Ph.D., Pamela Rothenberg, B.A., Jianliang Zhu, M.D., Rajeev Sachdeva, M.D., Seema Sonnad, Ph.D., Larry R. Kaiser, M.D., Neal A. Rubinstein, M.D., Ph.D., Scott K. Powers, Ph.D., Ed.D., and Joseph B. Shrager, M.D.

atrophy induced by diaphragm **disuse**

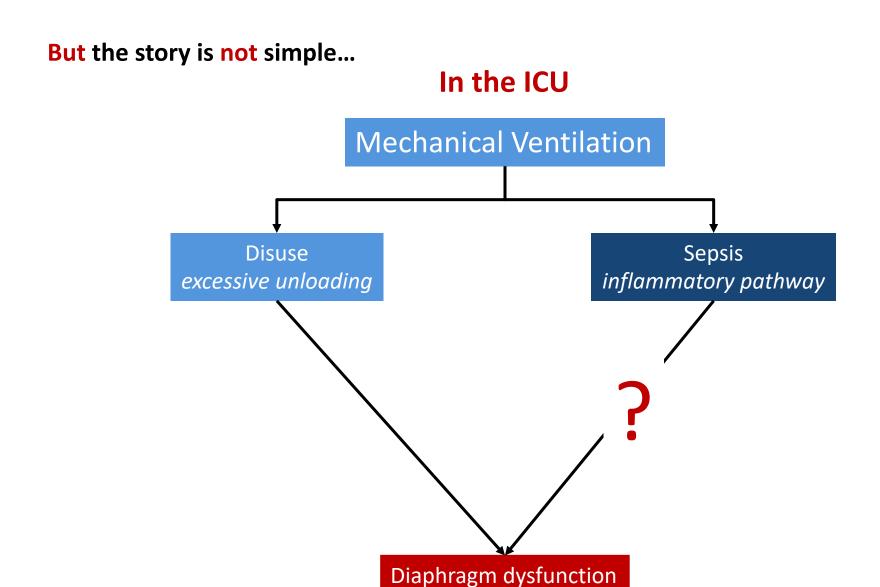
Control – VM - 2-3F


Case - VM - 18-69h


Diaphragm dysfunction: causes and consequences

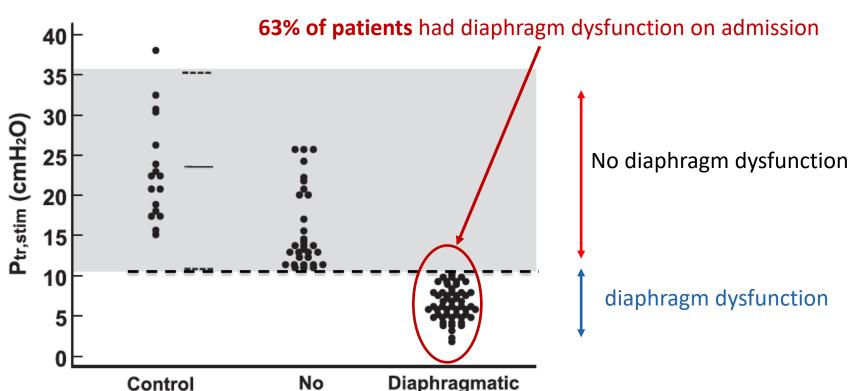
Rapidly Progressive Diaphragmatic Weakness and Injury during Mechanical Ventilation in Humans

Samir Jaber^{1,2,6}, Basil J. Petrof³, Boris Jung^{1,2}, Gérald Chanques^{1,2}, Jean-Philippe Berthet⁴, Christophe Rabuel⁵, Hassan Bouyabrine⁶, Patricia Courouble^{1,2}, Christelle Koechlin-Ramonatxo⁷, Mustapha Sebbane^{1,2}, Thomas Similowski⁸, Valérie Scheuermann⁹, Alexandre Mebazaa⁵, Xavier Capdevila^{1,2}, Dominique Mornet², Jacques Mercier^{2,10}, Alain Lacampagne⁹, Alexandre Philips², and Stefan Matecki^{2,10}



NER Diaphragm dysfunction: causes and consequences

A E R Diaphragm dysfunction: causes and consequences



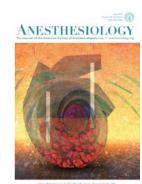
Diaphragm Dysfunction on **Admission** to the Intensive Care Unit

Prevalence, Risk Factors, and Prognostic Impact—A Prospective Study

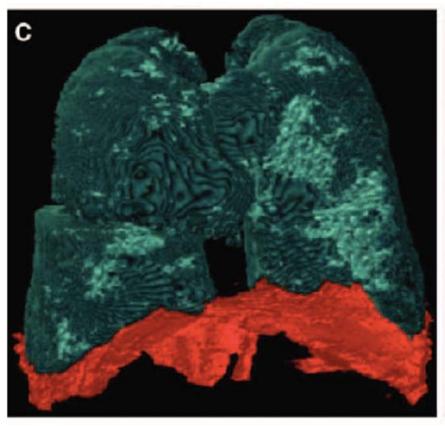
Alexandre Demoule^{1,2,3}, Boris Jung^{4,5}, Hélène Prodanovic², Nicolas Molinari⁶, Gerald Chanques^{4,5}, Catherine Coirault³, Stefan Matecki^{5,7}, Alexandre Duguet^{1,2}, Thomas Similowski^{1,2*}, and Samir Jaber^{4,5*}

Dysfunction

Dysfunction



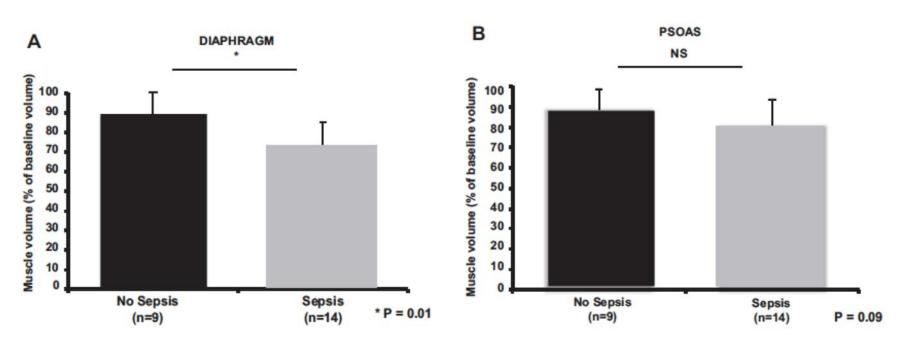
AER Diaphragm dysfunction: causes and consequences



Sepsis Is Associated with a Preferential **Diaphragmatic Atrophy**

Boris Jung, M.D., Ph.D., Stephanie Nougaret, M.D., M.Sc., Matthieu Conseil, M.D., M.Sc., Yannaël Coisel, M.D., M.Sc., Emmanuel Futier, M.D., Ph.D., Gerald Changues, M.D., Ph.D., Nicolas Molinari, Ph.D., Alain Lacampagne, Ph.D., Stefan Matecki, M.D., Ph.D., Samir Jaber, M.D., Ph.D.

AER Diaphragm dysfunction: causes and consequences

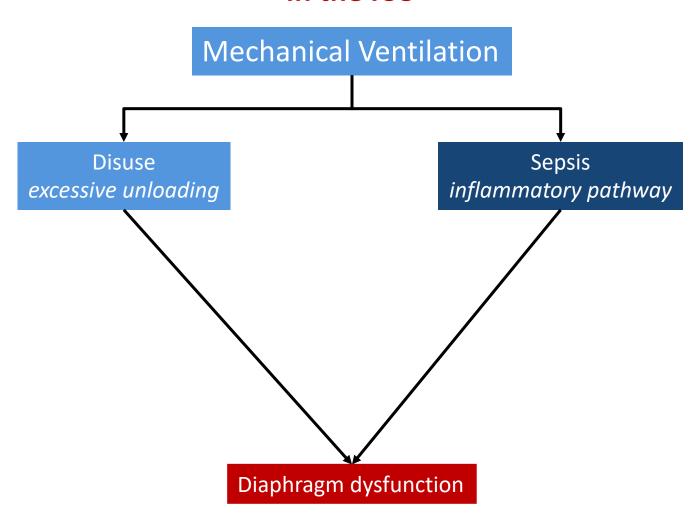


Sepsis Is Associated with a Preferential Diaphragmatic Atrophy

Boris Jung, M.D., Ph.D., Stephanie Nougaret, M.D., M.Sc., Matthieu Conseil, M.D., M.Sc., Yannaël Coisel, M.D., M.Sc., Emmanuel Futier, M.D., Ph.D., Gerald Chanques, M.D., Ph.D., Nicolas Molinari, Ph.D., Alain Lacampagne, Ph.D., Stefan Matecki, M.D., Ph.D., Samir Jaber, M.D., Ph.D.

Diaphragm and Psoas volumes assessed with CT scan

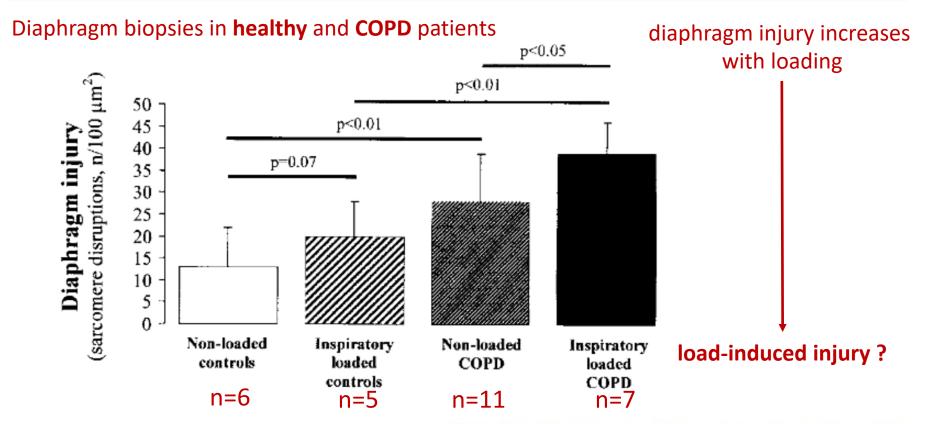
☑ diaphragm volume but not psoas volume in septic patients



NER Diaphragm dysfunction: causes and consequences

The story is actually complicated...

In the ICU



Diaphragm dysfunction: causes and consequences

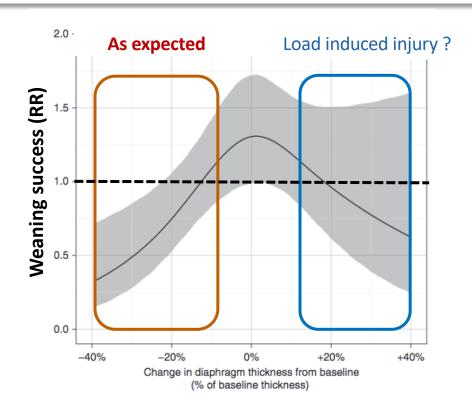
Injury of the Human Diaphragm Associated with Exertion and Chronic Obstructive Pulmonary Disease

MAURICIO OROZCO-LEVI, JOSEP LLORETA, JOAN MINGUELLA, SERGI SERRANO, JOAN M. BROQUETAS, and JOAQUIM GEA

Diaphragm dysfunction: causes and consequences

Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes

Ewan C. Goligher^{1,2,3,4}, Martin Dres^{5,6}, Eddy Fan^{1,2,4,7}, Gordon D. Rubenfeld^{1,4,7,8}, Damon C. Scales^{1,4,7,8}, Margaret S. Herridge^{1,2,4,9}, Stefannie Vorona², Michael C. Sklar^{5,10}, Nuttapol Rittayamai⁵, Ashley Lanys⁵, Alistair Murray², Deborah Brace², Cristian Urrea², W. Darlene Reid¹¹, George Tomlinson², Arthur S. Slutsky^{1,4,5}, Brian P. Kavanagh^{1,3,10,12}, Laurent J. Brochard^{1,4,5*}, and Niall D. Ferguson^{1,2,3,4,7,9*}

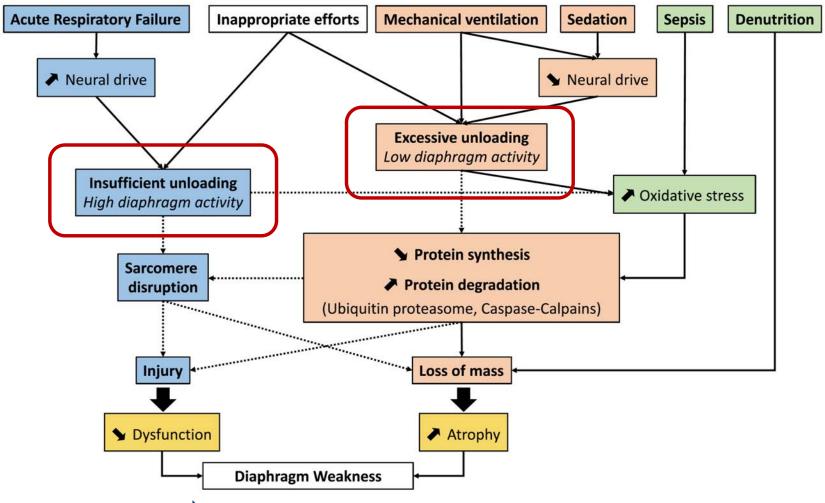


191 patients under MV

➤ Thickness (Atrophy) n=78 (41%)

≒ Thickness n=66 (35%)

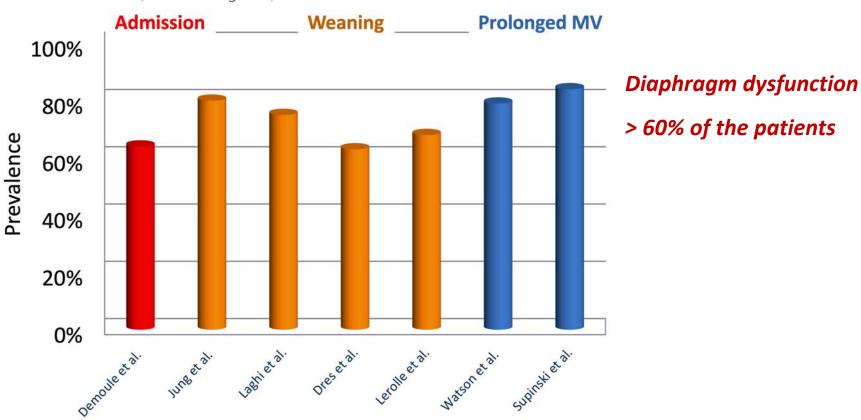
7 Thickness n=47 (24%)



NER Diaphragm dysfunction: causes and consequences

The story is much more complicated...

ER Diaphragm dysfunction: at the time of weaning



REVIEW

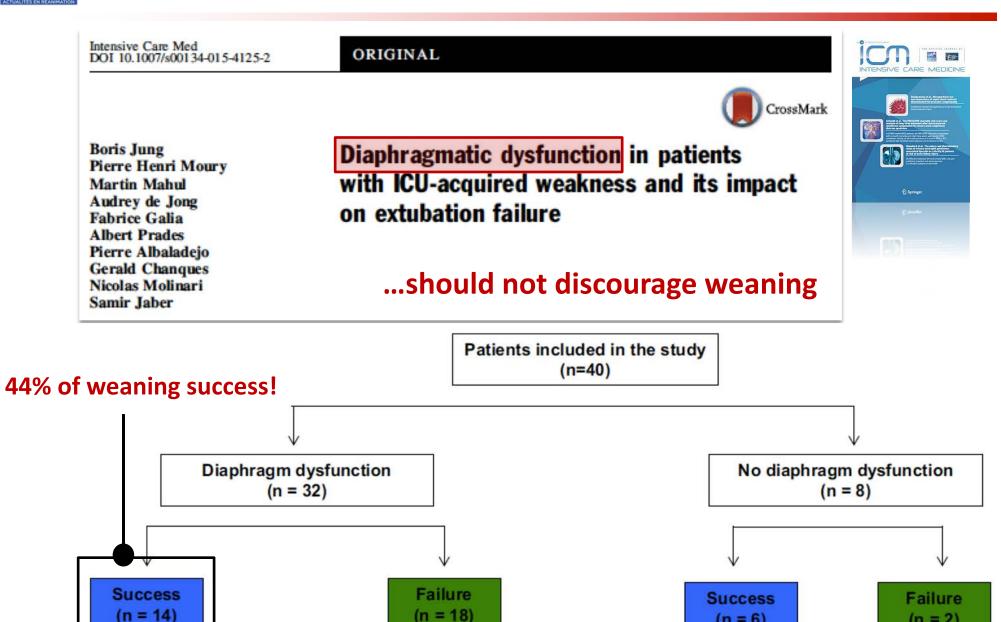
Critical illness-associated diaphragm weakness

Martin Dres^{1,2,3*}, Ewan C. Goligher^{4,5}, Leo M. A. Heunks⁶ and Laurent J. Brochard^{3,5}

Diaphragm dysfunction: at the time of weaning

Coexistence and Impact of Limb Muscle and Diaphragm Weakness at Time of Liberation from Mechanical Ventilation in Medical Intensive Care Unit Patients

Martin Dres^{1,2*}, Bruno-Pierre Dubé^{1,3*}, Julien Mayaux², Julie Delemazure², Danielle Reuter², Laurent Brochard^{4,5}, Thomas Similowski^{1,2}, and Alexandre Demoule^{1,2}


		Diaphragm Dysfunction					
	Overall Population (n = 76)	Yes (n = 48)	No (n = 28)	P Value			
Difficult weaning, n (%)	25 (33)	23 (48)	2 (7)	< 0.001			
Prolonged weaning, n (%)	8 (10)	8 (17)	0 (0)	0.02			
Total duration of MV, d Length of ICU stay, d	5 (2–10) 8 (4–15)	7 (4–12) 10 (5–16)	4 (1-6) 6 (3-10)	0.04 0.05			
Length of hospital stay, d ICU mortality, n (%) Hospital mortality, n (%)	21 (9–30) 8 (10) 12 (16)	23 (15–32) 8 (17) 11 (23)	18 (6–29) 0 (0) 1 (4)	0.09 0.02 0.04			

Diaphragm dysfunction: at the time of weaning

(n = 2)

(n = 6)

Piaphragm dysfunction: curative strategies

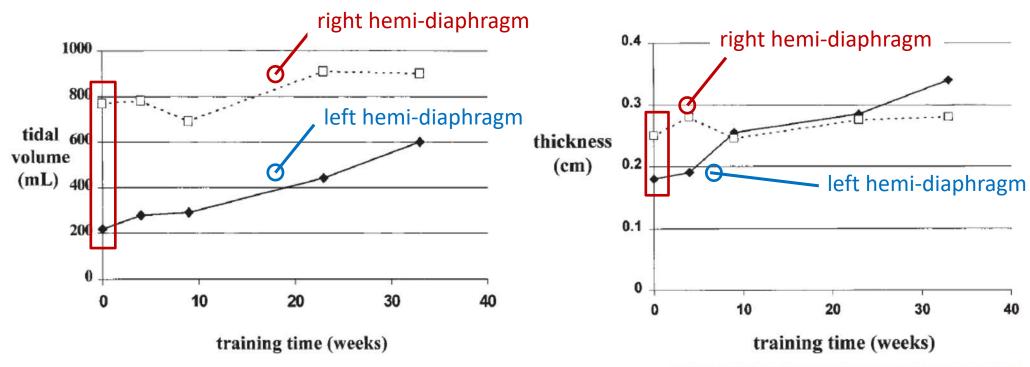
Inspiratory Muscle Rehabilitation in Critically III Adults

A Systematic Review and Meta-Analysis

Stefannie Vorona¹, Umberto Sabatini¹, Sulaiman Al-Maqbali¹, Michele Bertoni¹, Martin Dres^{2,3}, Bernie Bissett^{4,5}, Frank Van Haren^{5,6,7}, A. Daniel Martin⁸, Cristian Urrea¹, Debbie Brace¹, Matteo Parotto^{9,10,11}, Margaret S. Herridge^{1,9,12}, Neill K. J. Adhikari^{9,13,14}, Eddy Fan^{1,9,12,15}, Luana T. Melo¹⁶, W. Darlene Reid^{9,16}, Laurent J. Brochard^{2,9,12}, Niall D. Ferguson^{1,9,12,14,15}, and Ewan C. Goligher^{1,9,15}

inspiratory muscle training: effect on the duration of weaning

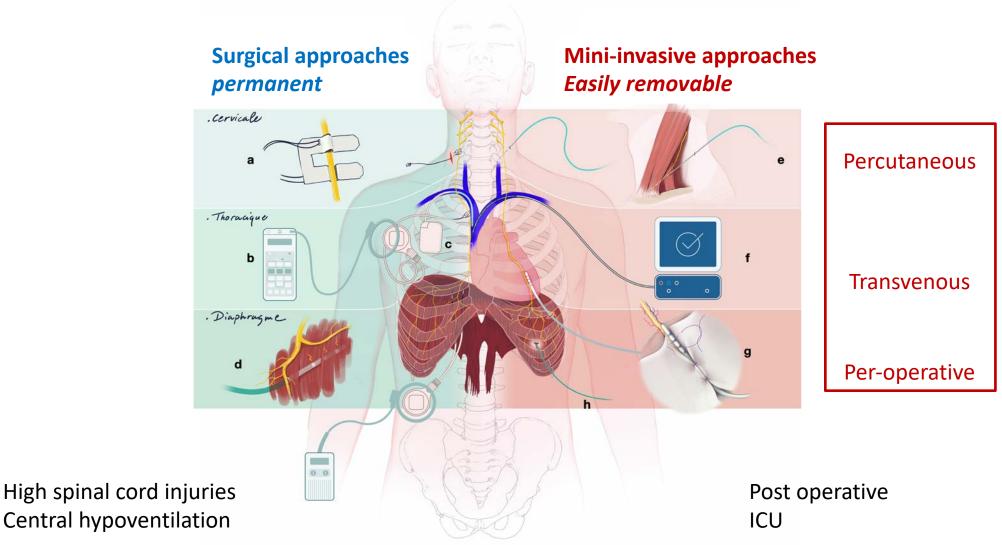
Experim		erimen	tal		Control									
Study	Total	Mean	SD	Total	Mean	SD	ı	Mean	differe	nce		MD	95% CI	Weight
Condessa 2013	45	2.2	1.8	47	2.5	2.5						-0.30	[-1.19; 0.59]	14.1%
Caruso 2005	12	1.0	0.5	13	1.3	0.9						-0.30	[-0.87; 0.27]	14.4%
Melo 2017	6	4.9	1.2	4	6.4	1.8		_				-1.50	[-3.51; 0.51]	12.0%
Shimizu 2014	8	3.4	1.3	5	4.9	2.0		_				-1.50	[-3.47; 0.47]	12.1%
Cader 2010	14	3.6	1.5	14	5.3	1.9		-	-			-1.70	[-2.97; -0.43]	13.5%
Dixit 2014	15	4.3	1.5	15	6.3	1.7		4	-			-2.00	[-3.15; -0.85]	13.7%
Tonella 2017	11	3.5	1.6	8	9.4	6.5	_		-			-5.90	[-10.50; -1.30]	6.8%
Mohamed 2014	20	3.3	1.6	20	10.4	2.5	-	-				-7.10	[-8.40; -5.80]	13.4%
Random effects model	131			126				<	>			-2.30	[-3.94; -0.67]	100.0%
Heterogeneity: $l^2 = 93\%$,	$\tau^2 = 4.7$	724, p <	0.01			_	10	-5	0	5	10			
						Fa	avors	IMT	Fav	ors co	ontrol			


- « control » group is not well defined
- IMT requires patient cooperation
- IMT is not specific of diaphragm dysfunction

Prevention of Human Diaphragm Atrophy with Short Periods of Electrical Stimulation

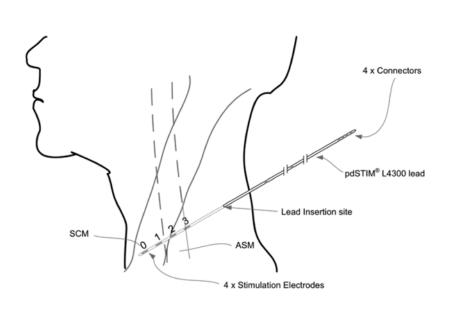
NAJIB T. AYAS, F. DENNIS McCOOL, ROBERT GORE, STEVEN L. LIEBERMAN, and ROBERT BROWN

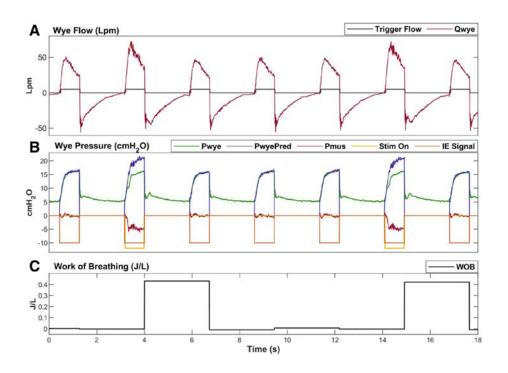
49 yo male with high spinal cord injury
Assessment 8 months after removal of left phrenic nerve stimulator



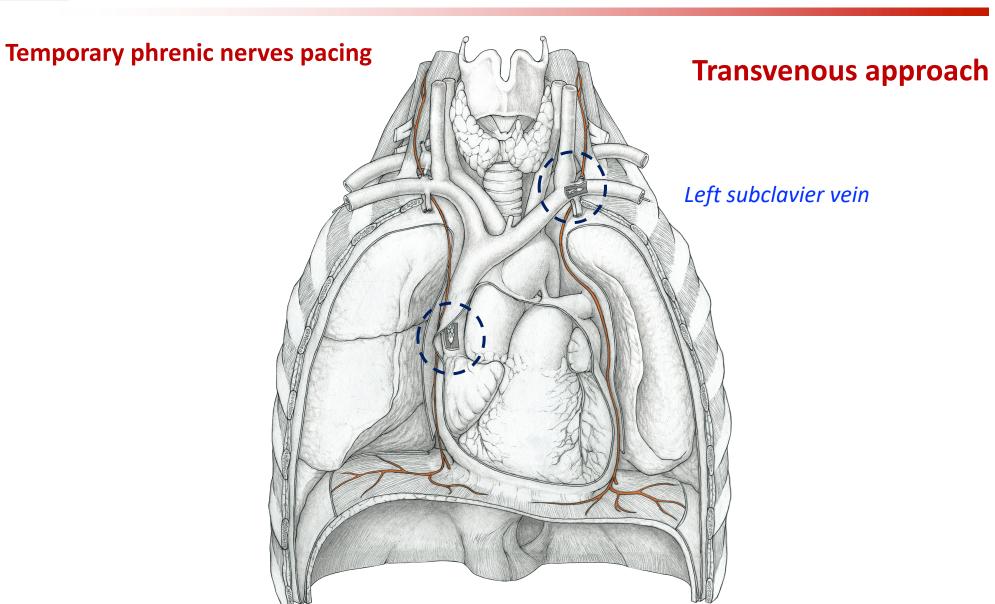
Diaphragm dysfunction: curative strategies

Diaphragm/phrenic nerves pacing



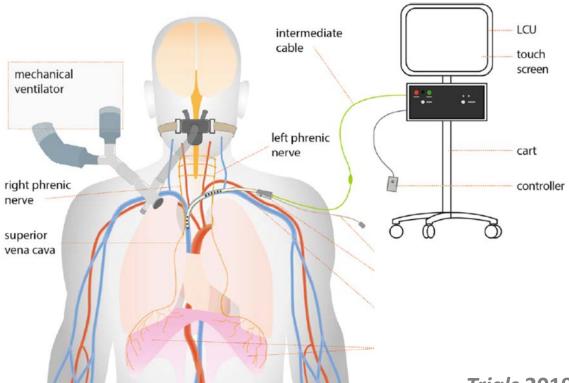

Diaphragm dysfunction: curative strategies

Initial Assessment of the Percutaneous Electrical Phrenic Nerve Stimulation System in Patients on Mechanical Ventilation


James O'Rourke, MB¹; Michal Soták, MD², Gerard F. Curley, MB¹; Aoife Doolan, MB¹; Tomáš Henlín, MD²; Gerard Mullins, MB⁴; Tomáš Tyll, MD²; William Omlie, MD⁵; Marco V. Ranieri, MD⁶

NER Diaphragm dysfunction: curative strategies

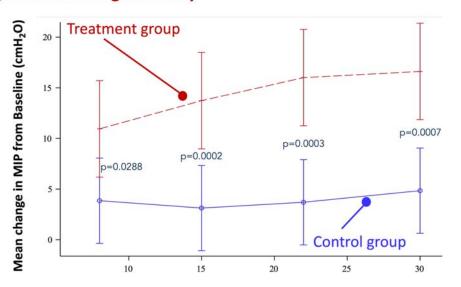
AER Diaphragm dysfunction: curative strategies

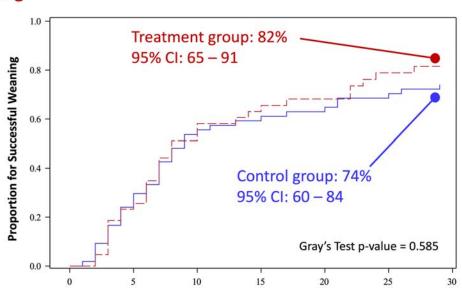


Temporary transvenous diaphragm pacing vs. standard of care for weaning from mechanical ventilation: study protocol for a randomized trial

CrossMark

Douglas Evans^{1,10}, Deborah Shure², Linda Clark¹, Gerard J. Criner³, Martin Dres⁴, Marcelo Gama de Abreu⁵, Franco Laghi⁶, David McDonagh⁷, Basil Petrof⁸, Teresa Nelson⁹ and Thomas Similowski^{4*}


ER Diaphragm dysfunction: curative strategies

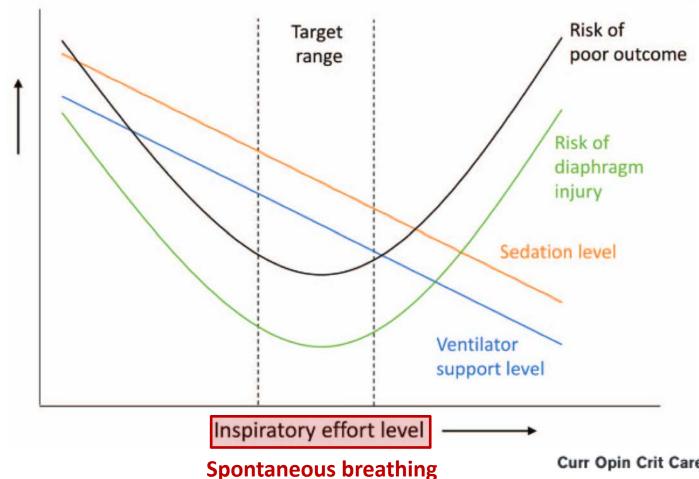

Preliminary findings of the Rescue-2 trial

transvenous diaphragm stimulation versus protocolized weaning

Change in MIP during the study

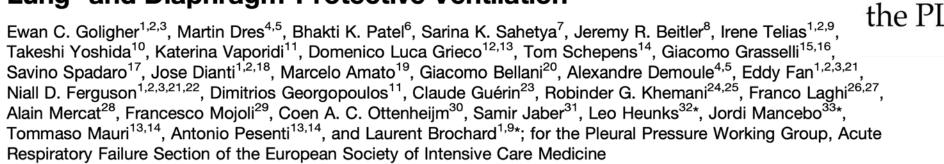
Weaning

Rescue-3 is ongoing (>200 patients)


Diaphragm dysfunction: preventive strategies

Diaphragm-protective mechanical ventilation

Tom Schepens^a, Martin Dres^{b,c}, Leo Heunks^d, and Ewan C. Goligher^{e,f,g}



Diaphragm dysfunction: preventive strategies

Lung- and Diaphragm-Protective Ventilation

Goal	Potential Therapeutic Target*
Prevent overassistance myotrauma	Any 1 of: Pmus \geq 3 to 5 cm H ₂ O Δ Pdi \geq 3 to 5 cm H ₂ O Δ Pes \leq -3 to -2 cm H ₂ O P _{0.1} > 1 to 1.5 cm H ₂ O TFdi \geq 15% EAdi \geq target value selected on the basis of Pocc-EAdi index and above targets
Prevent underassistance myotrauma	Any 1 of: Pmus \leq 10 to 15 cm H ₂ O Δ Pdi \leq 10 to 15 cm H ₂ O Δ Pes \geq -12 to -8 cm H ₂ O Pocc \geq -20 to -15 cm H ₂ O P _{0.1} $<$ 3.5 to 5 cm H ₂ O TFdi \leq 30% to 40% EAdi \leq limit value selected on the basis of Pocc-EAdi index and above targets

Méd. Intensive Réa. 29(2020)(in press)

DOI: 10.37051/mir-00014

MISE AU POINT / UPDATE

Dysfonction diaphragmatique en réanimation : physiopathologie, diagnostic et prise en charge

Diaphragmatic dysfunction in Intensive Care Unit: physiopathology, diagnosis and treatment

Q. Fossé^{1,2} • M. Dres^{1,2}*

Merci pour votre attention martin.dres@aphp.fr