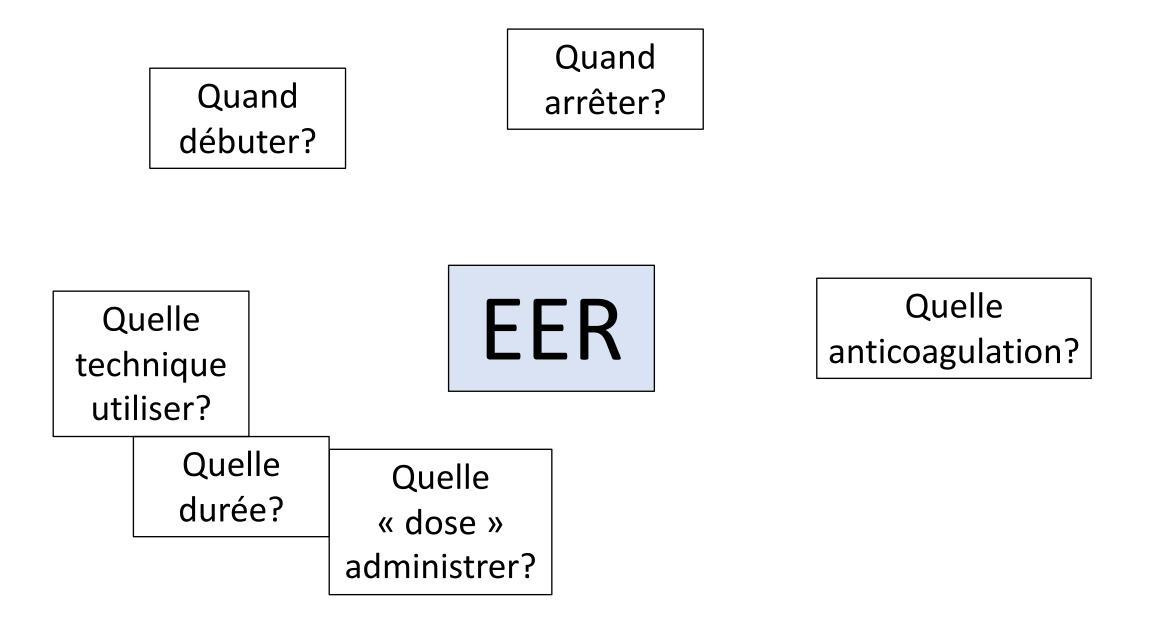
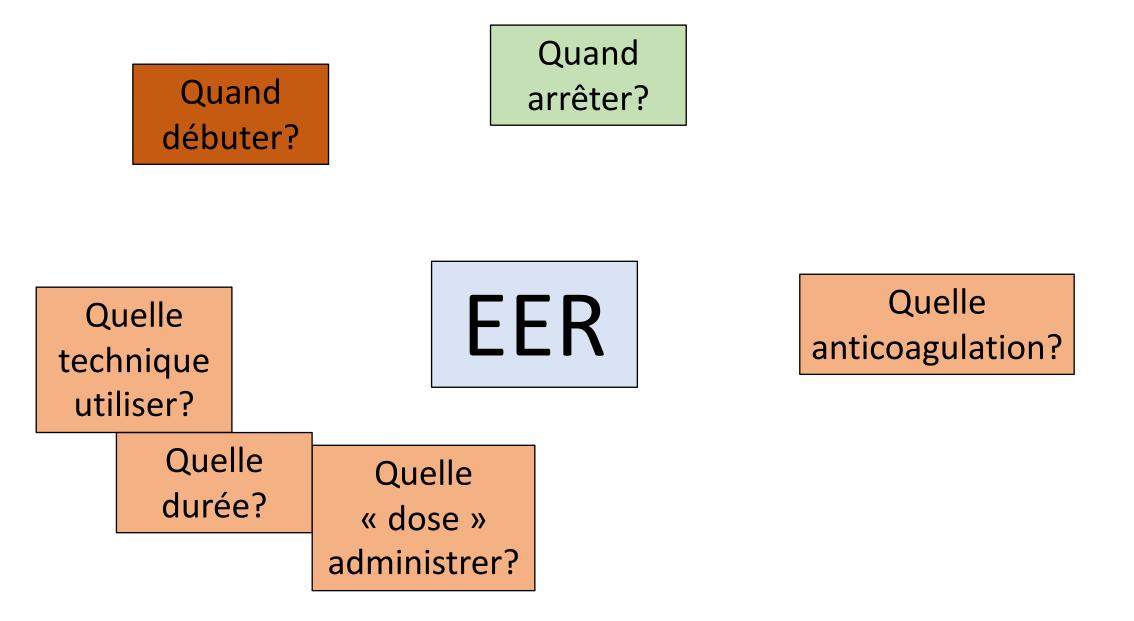
AER 2019

25^{ème} AER : 19 & 20 novembre 2020

ACTUALITES EN EPURATION EXTRA-RENALE

AER 2019


Session Réanimation Métabolique


Jeudi 21 Novembre 2019

Dr G. Claisse

Service de Néphrologie, Réanimation et Transplantation Rénale

CHU Saint-Etienne

EER – Quand débuter?

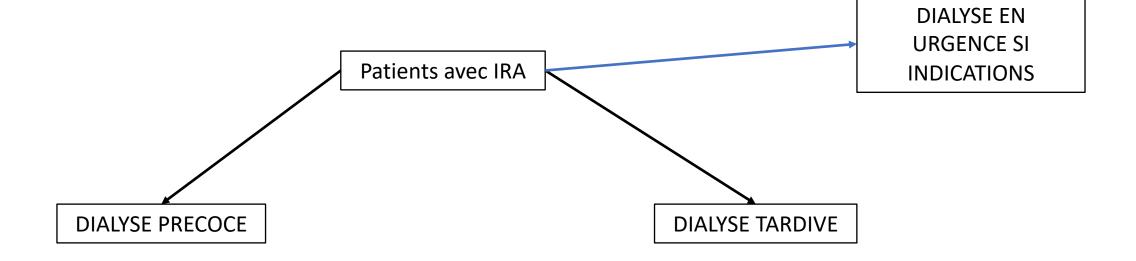
EER – Quand débuter?

- Indications « consensuelles » = complications de l'IRA
 - OAP anurique
 - Hyperkaliémie menaçante (>7 mmol + signes ECG)
 - Acidose métabolique profonde (< 7,1 pH)
 - Urémie mal tolérée (> 30-40 mmol/l, troubles neuro)
 - + Indications spécifiques = Epuration médicaments

EER – Quand débuter?

Uniquement sur des indications cliniques ? *(étude AKIKI)*

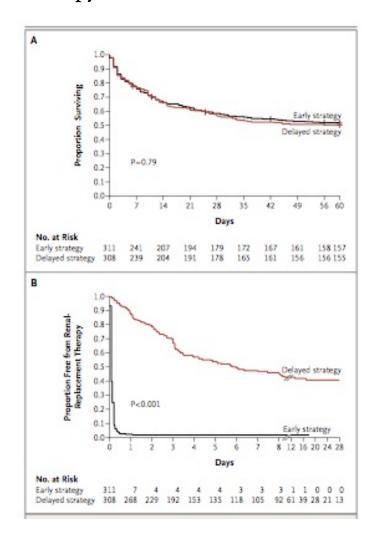
Ou


Dès l'existence d'une Insuffisance Rénale Aigüe sévère ? *(étude ELAIN)*

Classification KDIGO

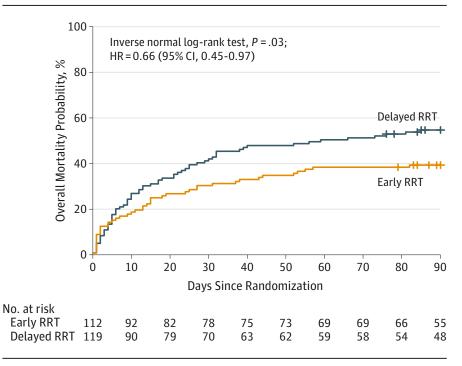
Table 2 | Staging of AKI

Stage	Serum creatinine	Urine output
1	1.5–1.9 times baseline OR ≥0.3 mg/dl (≥26.5 μmol/l) increase	<0.5 ml/kg/h for 6–12 hours
2	2.0–2.9 times baseline	<0.5 ml/kg/h for ≥12 hours
3	3.0 times baseline OR Increase in serum creatinine to $\ge 4.0 \text{ mg/dl} (\ge 353.6 \mu \text{mol/l})$ OR Initiation of renal replacement therapy OR, In patients <18 years, decrease in eGFR to <35 ml/min per 1.73 m ²	<0.3 ml/kg/h for ≥24 hours OR Anuria for ≥12 hours


Etudes Randomisées

AKIKI

ORIGINAL ARTICLE


Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically III Patients With Acute Kidney Injury The ELAIN Randomized Clinical Trial

> Figure 2. Mortality Probability Within 90 Days After Study Enrollment for Patients Receiving Early and Delayed Initiation of Renal Replacement Therapy (RRT)

KDIGO indicates Kidney Disease: Improving Global Outcomes. In the delayed group, 18 patients had an absolute indication for RRT. The median (quartile 1 [Q1], quartile 3 [Q3]) duration of follow-up was 90 days (Q1, Q3: 90, 90) in the early group and 90 days (Q1, Q3: 90, 90) in the delayed group. The vertical ticks indicate censored cases.

	ΑΚΙΚΙ	ELAIN
Principal hypothesis	Delayed RRT reduces 60-d mortality by 15%	Early RRT reduces 90-d mortality by 18%
Patients enrolled	620	231
Centers	31	1
Age, y	66	66
SOFA	11	16
CKD, %	10	41
Mechanical ventilation, %	86	88
Pressor requirement, %	85	88
Septic shock, %	67	32
Surgical, %	21	97
Criteria for early RRT	KDIGO stage 3 AKI	KDIGO stage 2 AKI
Criteria for delayed RRT	Clinical indications	KDIGO stage 3 AKI
Scr at RRT initiation in	3.3 (1.4)	1.9 (0.6)
early group (SD), mg/dL Scr at RRT initiation in delayed group (SD), mg/dL	5.3 (2.3)	2.4 (1.0)
Time to RRT initiation in early arm (IQR), h	2 (1-3) ^a	6 (4-7) ^b
Time to RRT initiation in delayed arm (IQR), h	57 (25-83) ^a	25.5 (18.8-40.3) ^b
RRT modality	IHD, SLED, or CRRT	CVVHDF only permitted modality for first 7 d
Received RRT in early arm, %	98	100
Received RRT in delayed arm, %	51	91

Table 1. A Comparison of the AKIKI and ELAIN Trials

Abbreviations: AKI, acute kidney injury; AKIKI, Artificial Kidney Initiation in Kidney Injury; CKD, chronic kidney disease; CRRT, continuous renal replacement therapy; CVVHDF, continuous venovenous hemodiafiltration; ELAIN, Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically III Patients With Acute Kidney Injury; IHD, intermittent hemodialysis; IQR, interquartile range; KDIGO, Kidney Disease: Improving Global Outcomes; RRT, renal replacement therapy; Scr, serum creatinine; SD, standard deviation; SLED, sustained low efficiency dialysis; SOFA, Sequential Organ Failure Assessment Score.

^aTime to RRT expressed from randomization.

^bTime to RRT expressed from meeting eligibility criteria.

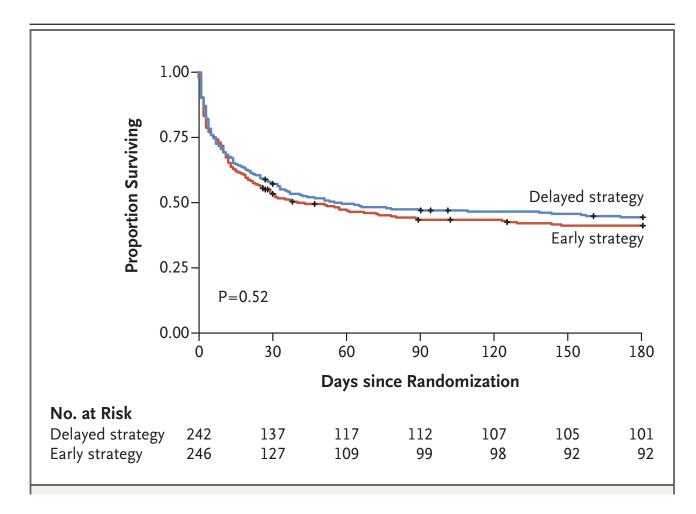

	AKIKI (n = 619)	ELAIN (n = 231)		
Study site	Multicenter study (31 sites in France)	Single center (surgical ICU in Germany)		
Enrollment criteria	 ICU patients age ≥ 18 yr KDIGO stage 3 AKI presumed due to ATN At least one of the following: Mechanical ventilation Catecholamine therapy Major exclusion criteria Blood urea nitrogen > 112 mg/dl (40 mmol/l) Potassium > 6 meq/l (> 5.5 with treatment) pH < 7.15 due to metabolic or mixed acidosis Severe pulmonary edema despite diuretics 			
Assignment	Randomized, unblinded	Randomized, unblinded Stratified by SOFA cardiovascular score & oliguria		
Early RRT	Within 6 h of documented stage 3 AKI (Median 2 h after randomization)	Within 8 h of documented stage 2 AKI (Median 6 h after meeting entry criteria)		
RRT in	 Any of the following: Blood urea nitrogen > 112 mg/dl (40 mmol/l) Potassium > 6 meq/l (> 5.5 with treatment) pH < 7.15 due to metabolic or mixed acidosis Severe pulmonary edema despite diuretics Oliguria lasting > 72 h after randomization (Median 57 h after randomization) 	 Documented stage 3 AKI <u>or</u> any of the following: Blood urea nitrogen > 100 mg/dl (36 mmol/l) Potassium > 6 meq/l (or ECG changes) Magnesium > 8 meq/l (4 mmol/l) Organ edema despite diuretics Urine output < 200 ml/ 24 h (Median 26 h after meeting entry criteria) 		
Initial RRT modality	Discretion of the enrolling site (55% intermittent RRT, 45% continuous RRT)	Continuous venovenous hemodiafiltration		
60-d mortality	49.1%	44.6%		
Primary outcome	60-d mortality 48.5% versus 49.7% (P = 0.79)	90-d mortality 39.3% versus 54.7% (P = 0.03)		
Receipt of RRT	98% versus 51% ($P < 0.001$) Catheter-related bacteremia: 10% versus 5% ($P = 0.03$)	100% versus 91% Median length of stay: 51 versus 82 d ($P < 0.001$) Mediation duration of mechanical ventilation: 126 versus 181 h ($P = 0.002$)		

Table 1 | Design and primary results of the AKIKI and ELAIN trials

IDEAL ICU

ORIGINAL ARTICLE

Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis

Quelle dose de Dialyse?

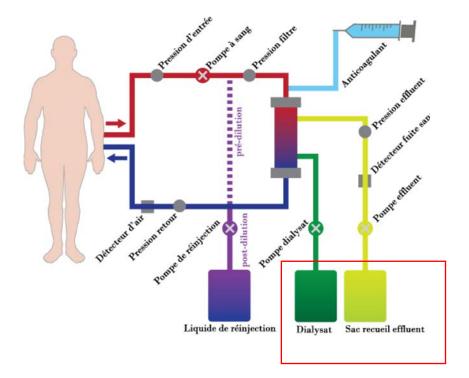
Dose de Dialyse

- Définition:
 - = Quantité d'épuration

Identique à une posologie de médicament: quelle dose administrer au patient pour:

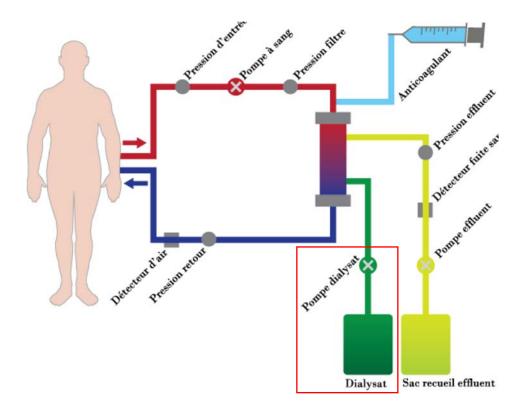
- améliorer l'état du patient
- éviter le surdosage responsable d'effets indésirables

Mais comment évaluer la DOSE DE DIALYSE?



Comme tous médicaments = en dose/Kg

Dose de Dialyse


• En EER continue (CVVHF, CVVHD ou CVVHDF):

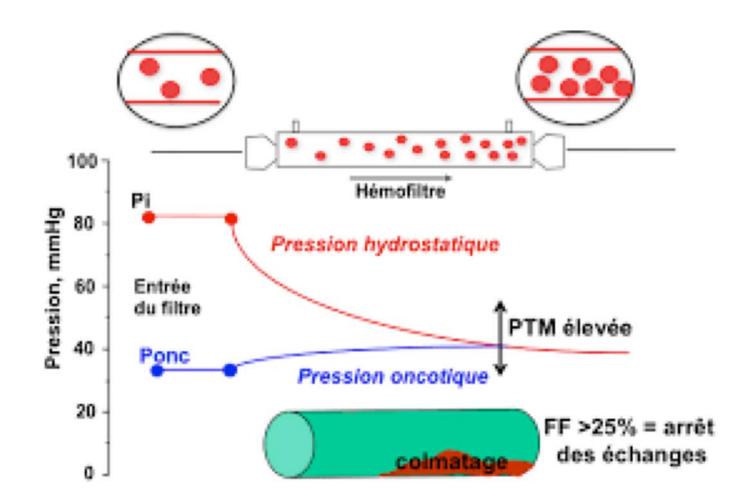
- Quantité d'effluent par heure
 - Effluent = dialysat + ultrafiltrat
 - En ml/Kg/h
 - Recommandations= 20-25 ml/Kg/h
- En pratique:
 - PRISMAFLEX/MULTIFILTRATE
 - Débit Dialysat = 2000 ml/h
 - Débit de Réinjection Post-Dilution = 1500 ml/h
 - Dose = 2000 + 1500 = **3500 ml/h**
 - Patients 85Kg: 40 ml/kg/h !

Dose de Dialyse

- En EER Discontinue (HD intermittente):
 - Evaluation complexe
 - Basé sur ce qui se fait en HD chronique
 - Mesure d'un index = kT/V
 - En pratique:
 - Fresenius 5008 / Evosys
 - 3 séances/ semaine
 - À 500 ml/min de Débit Dialysat

Intérêt d'augmenter la Dose?

- Pourquoi:
 - Epurer des molécules toxiques (cytokines pro-inflammatoires dans le sepsis)
- Risques:
 - Métaboliques ++
 - Hypokaliémie, Hypomagnésémie, Hypophosphorémie
 - Hypoglycémie, Dénutrition

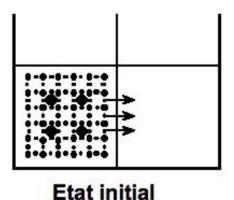

Table 7 Characters of ATN, RENAL and IVOIRE studies

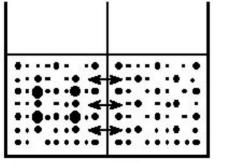
	ATN (2008)	RENAL (2009)	IVOIRE (2013)
Design	Multicenter RCT	Multicenter RCT	Multicenter RCT
Country	USA	Australia and New Zealand	France, Belgium and Netherlands
Patients	AKI	AKI	AKI with septic shock
No. of patients	1124	1508	140
Modality	CVVHDF, SLED, IHD	CVVHDF	CVVH
Prescribed dose	CVVHDF: 21.5 versus 36.2 ml/kg/h SLED and IHD: 3 versus 6/wk	25 versus 40 ml/kg/h	35 versus 70 ml/kg/h
Delivered dose	CVVHDF: 22 versus 35.8 ml/kg/h SLED: 2.9 versus 6.2/wk IHD: 3 versus 5.4/wk	22 versus 33.4 ml/kg/h	33.2 versus 65.6 ml/kg/h
Mortality	60 days 51.5 versus 53.6%	90 days 44.7 versus 44.7%	90 days 50.7 versus 56.1%

AKI acute kidney injury, *CVVH* continuous venous–venous hemofiltration, *CVVHDF* continuous venous–venous hemodiafiltration, *SLED* sustained low-efficiency dialysis, *IHD* intermittent hemodialysis

PAS D'INTERÊT D'AUGEMNTER LA DOSE AU DELA DE 20-25 ml/Kg/h

Fraction de Filtration

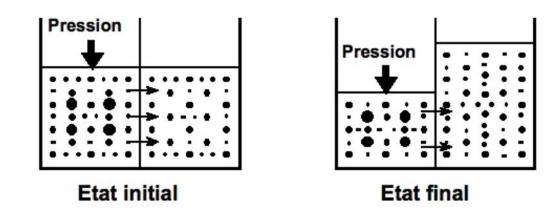


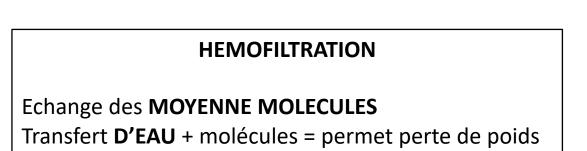

Fraction de Filtration (FF) = « Quantité d'eau plasmatique hémofiltrée » < 20-25% sinon risque de colmatage du filtre = Q Hémofiltration / Q Sang Augmentation Dose de dialyse = Augmentation de l'Hémofiltration = Risque de colmatage si pas d'augmentation du Q sang

Type de Dialyse

Principes

DIFFUSION Transfert de solutés Force motrice : différence de concentration




Etat d'équilibre

CONVECTION

Transfert simultané d'eau et de solutés Force motrice : différence de pression

HEMODIALYSE	
Echange des PETITES MOLECULES	
Pas de transfert d'eau = pas de perte de poids	

Type de DIALYSE

CONTINUE (24H/24) INTERMITTENT (4-6H)

CVV HD = ÉCHANGES DIFFUSIFS HDI = ÉCHANGES DIFFUSIFS

CVVHF = ECHANGES CONVECTIFS HFI = ECHANGES CONVECTIFS

CVV HDF = ECHANGES DIFFUSIFS + HDFI = ECHANGES DIFFUSIFS + CONVECTIFS

CONVECTION SYSTEMATIQUE POUR PERTE DE POIDS (ULTRAFILTRATION)

Type de DIALYSE

CONTINUE (24H/24) INTERMITTENT (4-6H)

CVV HD = ÉCHANGES DIFFUSIFSHDI = ÉCHANGES DIFFUSIFS

CVVHF = ECHANGES CONVECTIFS HFI = ECHANGES CONVECTIFS

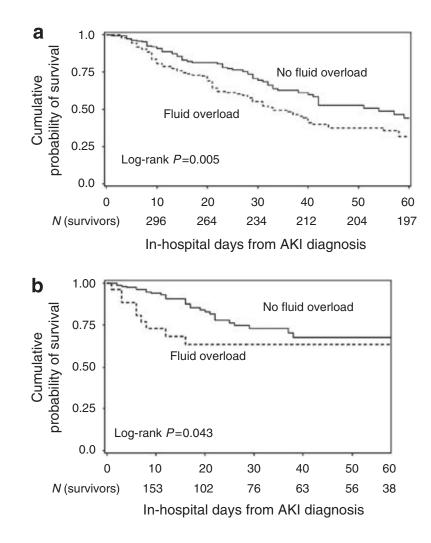
CVV HDF = ECHANGES DIFFUSIFS + CONVECTIFS HDFI = ECHANGES DIFFUSIFS + CONVECTIFS

CONVECTION SYSTEMATIQUE POUR PERTE DE POIDS (ULTRAFILTRATION)

Table 3 Characteristics of CRRT, SLED and IHD

	CRRT	SLED	IHD
Modality	CVVH/CVVHDF/ CVVHD	SLED/SLED-f	IHD/IHD-f
Duration per session	24 h	6–12 h	4 h
Frequency	24 h/day	3–6/week	3/week
Blood flow (ml/min)	100–200	100–200	250–350
Dialysate dose	20–25 ml/kg/h	100–300 ml/min	500–800 ml/min
Hemodynamic status	Stable	Possible stable	Unstable
Volume control	+++	++	+
Heparin dose	High	Moderate	Low

Mortalité


	CRR	Т	IHD or S	GLED		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
3.2.1 IHD							
Davenport 1989	1	3	2	4	0.5%	0.67 [0.10, 4.35]	
Gasparovic 2003	37	52	31	52	19.3%	1.19 [0.90, 1.58]	+ a -
John 2001	14	20	7	10	6.5%	1.00 [0.61, 1.64]	_
Mehta 2001	50	84	34	82	16.0%	1.44 [1.05, 1.96]	
Noble 2006	46	64	39	53	30.1%	0.98 [0.78, 1.22]	+
Uehlinger 2005	24	70	21	55	7.3%	0.90 [0.56, 1.43]	-+-
Subtotal (95% CI)		293		256	79.7%	1.10 [0.95, 1.28]	+
Total events	172		134				
Heterogeneity: Tau ² =	: 0.00; Chi ²	= 5.43	df = 5 (P	= 0.37);	; l² = 8%		
Test for overall effect:	Z = 1.25 (I	P = 0.2	1)				
3.2.2 SLED							
Abe 2010	10	30	5	30	1.8%	2.00 [0.78, 5.15]	+
Abe 2011	7	25	4	25	1.4%	1.75 [0.58, 5.24]	-
Schwenger	49	117	40	445	17.1%		<u> </u>
a a constanting a c		117	49	115	11.170	0.98 [0.73, 1.33]	T
-	-10	172	49	115 170	20.3%	0.98 [0.73, 1.33] 1.23 [0.77, 1.95]	
Subtotal (95% CI)	66		49 58				•
Subtotal (95% CI) Total events	66	172	58	170	20.3%		+
Subtotal (95% CI) Total events Heterogeneity: Tau ² =	66 0.06; Chi²	172 = 2.81,	58 df = 2 (P	170	20.3%		•
Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	66 0.06; Chi²	172 = 2.81,	58 df = 2 (P	170 = 0.25)	20.3%		
Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	66 0.06; Chi²	172 = 2.81, P = 0.3	58 df = 2 (P	170 = 0.25)	20.3% ; I² = 29%	1.23 [0.77, 1.95]	
Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	66 = 0.06; Chi² : Z = 0.86 (I 238	172 = 2.81, P = 0.3 465	58 , df = 2 (P 9) 192	170 = 0.25) 426	20.3% ; I² = 29% 100.0%	1.23 [0.77, 1.95] 1.10 [0.97, 1.25]	
Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	66 = 0.06; Chi ² : Z = 0.86 (I 238 = 0.00; Chi ²	172 = 2.81, P = 0.3 465 = 8.24,	58 , df = 2 (P 9) 192 , df = 8 (P	170 = 0.25) 426	20.3% ; I² = 29% 100.0%	1.23 [0.77, 1.95]	0.1 1 10 10 Favours CRRT Favours IHD/SLED

Récupération Rénale

	CRR	т	IHD or §	SLED		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.3.1 IHD							
Augustine 2004	7	13	8	12	16.5%	0.81 [0.42, 1.54]	
Mehta 2001	5	36	3	43	5.4%	1.99 [0.51, 7.77]	- -
Schefold	13	57	14	53	28.7%	0.86 [0.45, 1.66]	
Uehlinger 2005	1	37	1	27	2.3%	0.73 [0.05, 11.16]	
Vinsonneau 2006	4	61	6	61	11.9%	0.67 [0.20, 2.25]	
Subtotal (95% CI)		204		196	64.8%	0.90 [0.59, 1.38]	+
Total events	30		32				
Heterogeneity: Chi ² =	1.69, df = ‹	4 (P = ().79); l² = ·	0%			
Test for overall effect:	Z = 0.48 (I	P = 0.6	3)				
3.3.2 SLED							
Abe 2010	3	19	2	25	3.4%	1.97 [0.37, 10.66]	
Abe 2011	6	16	3	20	5.3%	2.50 [0.74, 8.47]	+
Badawy 2013	8	31	12	33	23.0%	0.71 [0.34, 1.50]	
Kumar 2004	2	8	2	10	3.5%	1.25 [0.22, 7.02]	
Subtotal (95% CI)		74		88	35.2%	1.15 [0.67, 1.99]	+
Total events	19		19				
Heterogeneity: Chi ² = 3	3.56, df = 3	3 (P = 0).31); I² =	16%			
Test for overall effect:	Z = 0.52 (P = 0.6	1)				
Total (95% CI)		278		284	100.0%	0.99 [0.71, 1.38]	
Total events	49		51				
Heterogeneity: Chi ² =	5.71, df = (8 (P = ().68); l ² =	0%			
Test for overall effect:		-					0.01 0.1 1 10 100 Favours CRRT Favours IHD/SLED
Test for subgroup diffe			,	(P = 0.4)	8), I² = 0 9	6	Favours CRRT Favours IND/SLED
rescion subgroup diffe	aences. C	$m^2 = 0.2$	49, UI - T	1P = 0.4	0, 1 = 0	0	

Dialyse et Fluid Overload

Fluid Overload

Modality	Blood flow rates (ml min ⁻¹)	Fluid removal rates (ml h ⁻¹)	Anti-coagulation	Advantages	Disadvantages
Intermittent ultrafiltration	250-400	0-2000	Desirable	Widely available	Less effective in reaching fluid balance goals Can lead to haemodynamic instability Requires venous access
Continuous ultrafiltration	50-100	0-300	Desirable	Can be performed as either SCUF or CVVH Haemodynamically better tolerated CVVH allows for a replacement solution and dissociation of sodium and water clearance	Requires venous access Not as widely available
Peritoneal dialysis	Not applicable	0-500	Not required	Modality of choice for paediatrics No venous access Haemodynamically more stable	Cannot be used in patients with abdominal surgery or trauma Not available at all sites Requires technical expertise to place catheters
Haemodialysis (intermittent)	250-400	0-2000	Desirable	Widely available Adds clearance of solutes	Less effective in reaching daily fluid balance goals Can lead to haemodynamic instability Requires venous access
Haemodialysis (continuous)	50-100	0-300	Desirable	Adds clearance of solutes Haemodynamically more stable	Requires venous access Not as widely available

 Table 3
 Mechanical fluid removal techniques. SCUF, slow continuous ultrafiltration; CVVH, continuous veno-venous haemofiltration

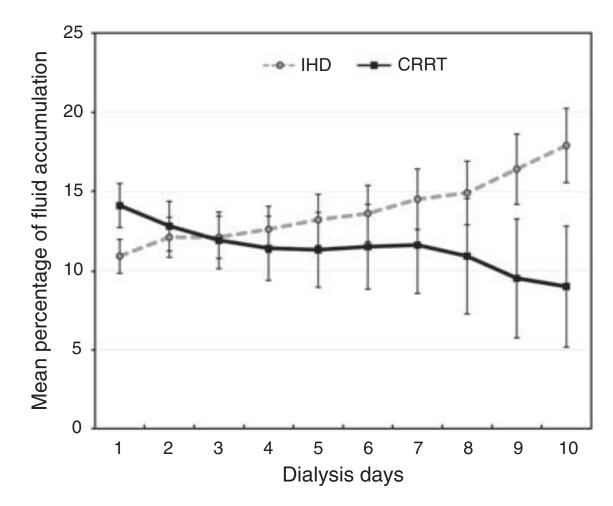
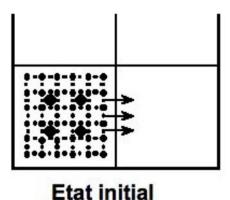
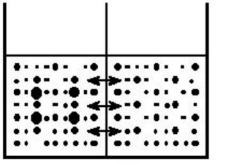


Figure 4 | Fluid accumulation over time in patients on continuous renal replacement therapy and on intermittent hemodialysis.

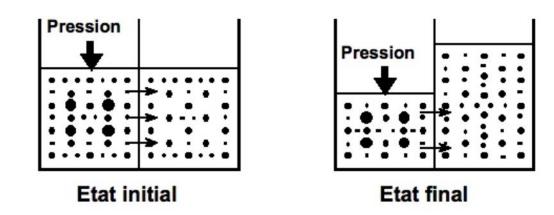

Membrane HCO et Sepsis

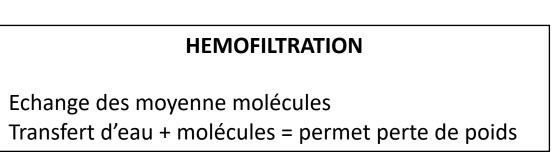

Membrane HCO et Sepsis

- Objectifs d'une EER:
 - Correction des troubles hydro-electrolytiques (K+, Ph...) et acido-basiques (Gestion de l'acidose métabolique=pH)
 - Ultrafiltration (fluid overload)
 - ELIMINER TOXINES
 - Endogènes = toxines urémiques (urée = représentant de ces toxines)
 - Exogènes = médicaments
 - CYTOKINES pro-inflammatoires = sécrétées en grande quantité dans le sepsis avec des effets délétères
 Intérêt de les épurer?

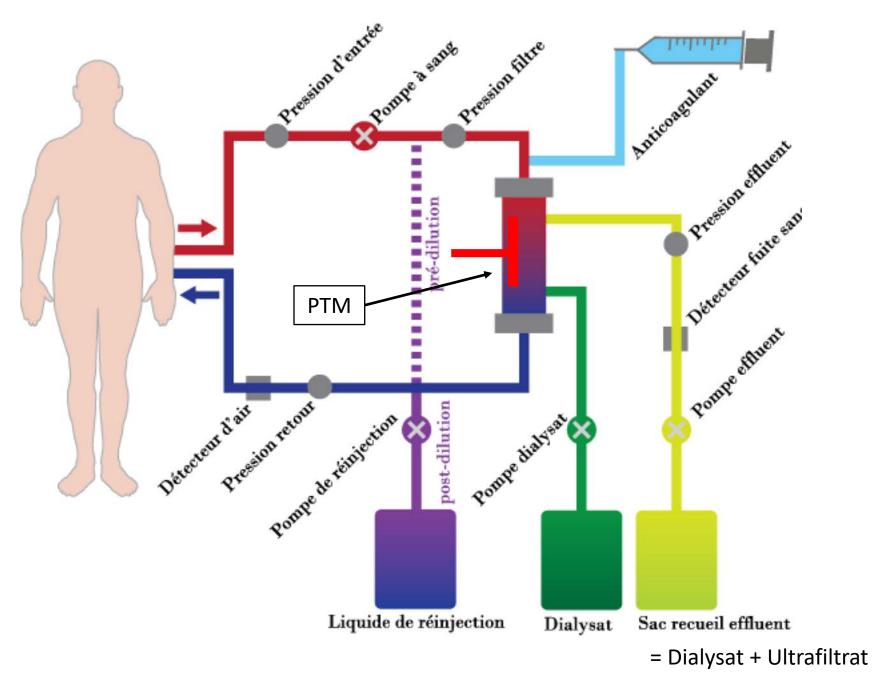
Principes

DIFFUSION Transfert de solutés Force motrice : différence de concentration




Etat d'équilibre

CONVECTION


Transfert simultané d'eau et de solutés Force motrice : différence de pression

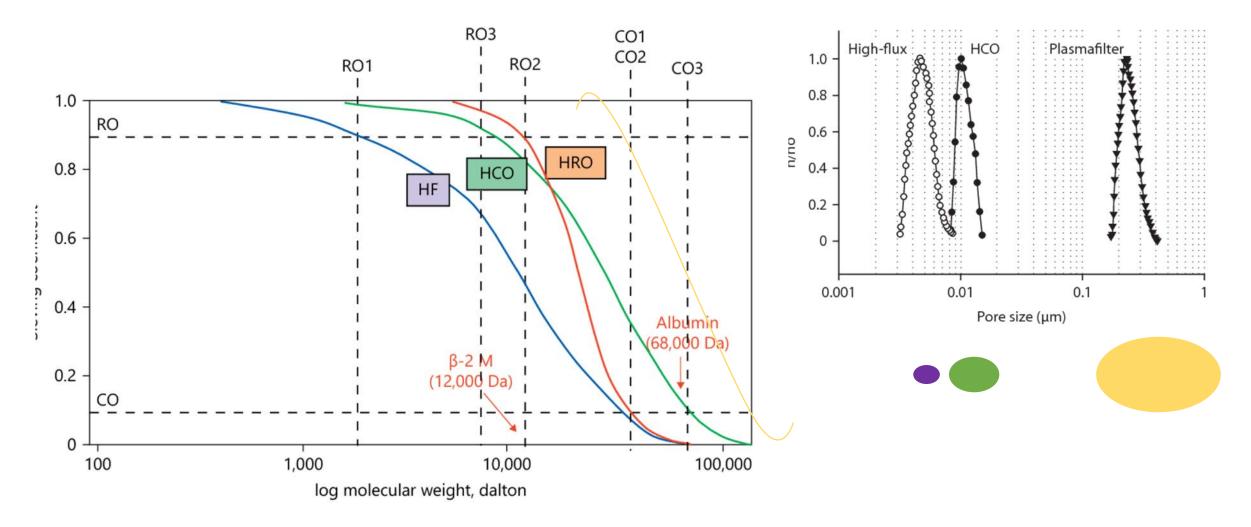
HEMODIALYSE Echange des petites molécules Pas de transfert d'eau = pas de perte de poids

HémoDiaFiltration (HDF)

HémoDiaFiltration (HDF) :

<u>Hémodialyse</u> = diffusion = échanges des petites molécules (K+, Urée...)

<u>Hémofiltration</u> = convection =


- Perte de poids (UF)

- Echange moyenne molécules (cytokines, médicaments)

Hémofiltration

DIALYSE PLA

PLASMAPHERESE

Membrane HCO et Sepsis

- Sepsis/Choc Septique → synthèse de molécules (Cytokines) Proinflammatoires
- Cytokines = effet délétère potentiel
- Pour éliminer ces Cytokines → membrane à « large pores » = membrane HCO = High Cut-Off (60-100 Kdalton)

Comparaison membrane HCO versus membrane standard

Table 4 Cytokine clearance, albumin clearance and clinical effects of renal replacement therapy using high cutoff membranes

First author, year	N	RRT modal- ity	Qf or Qd (l/h)	Cutoff ^a (kDa)	Cytokine clearance	Albumin clearance	Clinical effects
Morgera et al. [103]	24	CVVH versus CVVHD	Qf 1 versus 2.5 Qd 1 versus 2.5	60	Greater IL-1ra clearance with CVVH. Increased Qf or Qd increased IL-6 and IL-1ra clearance	Highest with CVVH 2.5 l/h	Overall decrease in APACHE II and MODS scores. No difference between groups
Morgera [235]	30	CVVH	Qf 2.5	30 versus 60	Greater IL-6 and IL-1ra clearance with 60 kDa- filter	Plasma albumin levels not affected by filter cutoff	Reduced noradrenaline require- ments with 60 kDa-filter
Haase et al. [104]	10	IHD	Qd 18	20 versus 60	Greater IL-6, IL-8 and IL-10 clearance with 60 kDa-filter	Plasma albumin levels not affected by filter cutoff	Trend toward increased mean arterial pressure and reduced vasopressor requirements with 60 kDa-filter

RRT renal replacement therapy, *Qf* ultrafiltration rate, *Qd* dialysate flow rate, *CVVH* continuous venovenous hemofiltration, *CVVHD* continuous venovenous hemodialysis, *IHD* intermittent hemodialysis, *APACHE* acute physiology and chronic health evaluation, *MODS* multiorgan dysfunction syndrome

^a Estimated in vivo membrane cutoff