

Physiopathology of difficult weaning

Nicolas TERZI - MD-PhD Service de Médecine Intensive et Réanimation CHU de Grenoble Inserm U1042

Non Financial support for congress

- Hill-Rom
- Dräger

Fees for speaker:

- Covidien
- Lilly oncology
- Boehringher Inghelheim
- Pfizer

Weaning from mechanical ventilation

J-M. Boles*, J. Bion[#], A. Connors[¶], M. Herridge⁺, B. Marsh[§], C. Melot^{*f*}, R. Pearl**, H. Silverman^{##}, M. Stanchina^{¶¶}, A. Vieillard-Baron⁺⁺, T. Welte^{§§}

ERJ 2007

Characteristics and Outcomes in Adult Patients Receiving Mechanical Ventilation: A 28-Day International Study.

Mortality is associated with

duration of Mechanical Ventilation

Esteban et al. JAMA 2002

Weaning = Challenge

Difficult weaning : which definition ?

2005: National Association for Medical Direction of Respiratory Care
"the need for more than 21
consecutive days of MV for more than 6 h/day"

Weaning according to New Definition (WIND) study (2016) "successful extubation after more than three SBTs or taking more than seven days" 2007: European Respiratory Society (ERS) Task Force "the need of more than 7 days of weaning after the first spontaneous breathing trial (SBT)"

Characteristics and Outcomes of Ventilated Patients According to Time to Liberation from Mechanical Ventilation

Oscar Peñuelas^{1,2}, Fernando Frutos-Vivar^{1,2}, Cristina Fernández³, Antonio Anzueto⁴, Scott K. Epstein⁶, Carlos Apezteguía⁷, Marco González⁸, Nicolas Nin^{1,2}, Konstantinos Raymondos⁹, Vinko Tomicic¹⁰, Pablo Desmery¹¹, Yaseen Arabi¹², Paolo Pelosi¹³, Michael Kuiper¹⁴, Manuel Jibaja¹⁵, Dimitros Matamis¹⁶, Niall D. Ferguson⁵, and Andrés Esteban^{1,2} for the Ventila Group^{*}

Am J Respir Crit Care Med Vol 184. pp 430-437, 2011

Characteristics and Outcomes of Ventilated Patients According to Time to Liberation from Mechanical Ventilation

Oscar Peñuelas^{1,2}, Fernando Frutos-Vivar^{1,2}, Cristina Fernández³, Antonio Anzueto⁴, Scott K. Epstein⁶, Carlos Apezteguía⁷, Marco González⁸, Nicolas Nin^{1,2}, Konstantinos Raymondos⁹, Vinko Tomicic¹⁰, Pablo Desmery¹¹, Yaseen Arabi¹², Paolo Pelosi¹³, Michael Kuiper¹⁴, Manuel Jibaja¹⁵, Dimitros Matamis¹⁶, Niall D. Ferguson⁵, and Andrés Esteban^{1,2} for the Ventila Group^{*}

Am J Respir Crit Care Med Vol 184. pp 430-437, 2011

Epidemiology of Weaning Outcome according to a New Definition The WIND Study

Béduneau et al. AJRCCM 2017

Epidemiology of Weaning Outcome according to a New Definition The WIND Study

Béduneau et al. AJRCCM 2017

Clinical challenges in mechanical ventilation

Ewan C Goligher, Niall D Ferguson, Laurent J Brochard

Lancet 2016

TABLE 4 Common pathophysiologies and their incidence, which may impact on the ability to wean a patient from mechanical ventilation

Pathophysiology	Consider		
Respiratory load	Increased work of breathing: inappropriate ventilator settings		
nespiratory load	Reduced compliance: preumonia (ventilator acquired): cardiogenic or poncardiogenic oedema: pulmonany		
	fibrosis: pulmonany basmorrhade: diffuse pulmonany infiltrates		
	Aisyay branchaspanetriation		
	Anway biolicitoconstitution		
	Device CDT and the back to be		
	During SB1: endotracheal tube		
	Post-extubation: glottic oedema; increased airway secretions; sputum retention		
Cardiac load	Cardiac dystunction prior to critical illness		
	Increased cardiac workload leading to myocardial dysfunction: dynamic hyperinflation; increased metabolic demand; unresolved sepsis		
Neuromuscular	Depressed central drive: metabolic alkalosis; mechanical ventilation; sedative/hynotic medications		
	Central ventilatory command: failure of the neuromuscular respiratory system		
	Peripheral dysfunction: primary causes of neuromuscular weakness; CINMA		
Neuropsychological	Delirium		
	Anxiety, depression		
Metabolic	Metabolic disturbances		
	Role of corticosteroids		
	Hyperglycaemia		
Nutrition	Overweight		
	Malnutrition		
	Ventilator-induced diaphragm dysfunction		
Anaemia			

CURRENT CONCEPTS

Weaning Patients from the Ventilator

N Engl J Med 2012;367:2233-9.

John F. McConville, M.D., and John P. Kress, M.D.

Sevrage possible mais non identifié

EFFECT ON THE DURATION OF MECHANICAL VENTILATION OF IDENTIFYING PATIENTS CAPABLE OF BREATHING SPONTANEOUSLY

Ely W et al. NEJM 1996

Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial

Girard T et al. Lancet 2008

Daily Sedation Interruption in Mechanically Ventilated Critically III Patients Cared for With a Sedation Protocol

A Randomized Controlled Trial

N=430 Patients

Mehta et al. JAMA 2012

ICU-Acquired Weakness and Recovery from Critical Illness

The reported incidence of

ICU-acquired weakness ranges

from 25 to 100%

Kress JP et al. 2014

Does ICU-acquired paresis lengthen weaning from mechanical ventilation?

De Jonghe et al. 2004

Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients*

Garnacho-Montero et al. 2005

Monitoring of the Respiratory Muscles in the Critically III

Jonne Doorduin¹, Hieronymus W. H. van Hees², Johannes G. van der Hoeven¹, and Leo M. A. Heunks¹

mechanical ventilation sepsis malnutrition drugs (i.e. corticosteroids) oxidative stress / inflammation protein synthesis \downarrow proteolysis↑ mechanical ventilation atrophy sepsis drugs oxidative stress / inflammation (i.e. sedatives, NMBA) contractile protein impaired central drive / dysfunction excitation-contraction DIAPHRAGM coupling WEAKNESS

2013

Rapidly Progressive Diaphragmatic Weakness and Injury during Mechanical Ventilation in Humans

Coexistence and Impact of Limb Muscle and Diaphragm Weakness at Time of Liberation from Mechanical Ventilation in Medical Intensive Care Unit Patients

76 patients at their first weaning attempt: 63% had diaphragm dysfunction, 34% had limb muscle weakness and 21% had both

Evolution of Diaphragm Thickness during Mechanical Ventilation Impact of Inspiratory Effort

Thickness increases in approximately 10% of patients in association with excess inspiratory effort and lower levels of ventilatory support

Diaphragm thickness decreases rapidly during the first several days of mechanical ventilation in more than 40%

> Goligher E et al. AJRCCM 2015

Acute Left Ventricular Dysfunction during Unsuccessful Weaning from Mechanical Ventilation Lemaire et al. Ar

Lemaire et al. Anesthesiology 1988

Cardiac dysfunction induced by weaning from mechanical ventilation: incidence, risk factors, and effects of fluid removal

Critical Care

) CrossMark

Jinglun Liu^{1,2,3,4†}, Feng Shen^{1,2,3,5†}, Jean-Louis Teboul^{1,2,3}, Nadia Anguel^{1,2,3}, Alexandra Beurton^{1,2,3}, Nadia Bezaz^{1,2,3}, Christian Richard^{1,2,3} and Xavier Monnet^{1,2,3*}

Natriuretic Peptide-driven Fluid Management during Ventilator Weaning

A Randomized Controlled Trial

Mekontso-Dessap et al. AJRCCM 2012

Incidence de l'OAP au cours du sevrage

Risk Factors for Extubation Failure in Patients Following a Successful Spontaneous Breathing Trial*

Cardiac function during weaning failure: the role of diastolic dysfunction

O Annals of Intensive Care

Roche-campo et al. 2017

N=67

Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation* Wysocki et al. 2006

ntensive Care Med (2006) 32:1515–1522 DOI 10.1007/s00134-006-0301-8	ORIGINAL
Arnaud W. Thille Pablo Rodriguez Belen Cabello François Lellouche Laurent Brochard	Patient-ventilator asynchrony during assisted mechanical ventilation

62 patients under mechanical ventlation: 24% presented an asynchrony index higher than 10%

Over-Assistance

Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes

Gohliger et al. AJRCCM (2018) 197; 204-213

	First Week o Me	in Diaphragm Th f Ventilation Pat asurements (n =	nickness during ients with ≥2 191)	Statistical Comparison or Adjusted Odd	s Adjusted Count Ratio s Ratio (95% CI)*
Outcome	≥10% Decrease in Thickness (n = 78; 41%)	<10% Change in Thickness (<i>n</i> = 66; 35%)	≥10% Increase in Thickness (<i>n</i> = 47; 24%)	≥10% Decrease in Thickness vs. <10% Change in Thickness	≥10% Increase in Thickness vs. <10% Change in Thickness
Ventilator-free days to	46 (0–53)	51 (0–55)	37 <mark>(</mark> 0–51)	0.77 (0.59–1.00)	0.91 (0.67–1.22)
Duration of ventilation (in ICU survivors), d	9 (5–17)†	5 (4–9)	10 (6–22)†	1.69 (1.28–2.24)	1.38 (1.00–1.90)
Duration of ICU admission (in ICU survivors), d	12.5 (7–21)†	8 (5–12)	14 (7–24)†	1.71 (1.29–2.27)	1.31 (0.94–1.83)
Duration of hospitalization (in hospital survivors), d	29 (16–58) [†]	22 (11–51)	30 (17–65)	1.44 (1.01–2.05)	1.23 (0.71–1.60)
Complications of acute respiratory failure, n (%) [‡]	49 (64) [†]	31 (48)	31 (67) [†]	3.00 (1.34–6.72)	1.84 (0.77–4.43)
Reintubation, n (%)	16 (21) [†]	5 (8)	12 (26) [†]	3.55 (1.14-11.05)	3.24 (0.97-10.88)
Tracheostomy, n (%)	20 (26) [†]	7 (11)	11 (23)	3.58 (1.29-9.97)	2.11 (0.66-6.70)
Mechanical ventilation >14 d, n (%)	27 (35)†	14 (21)	20 (43) [†]	2.97 (1.26–6.97)	2.16 (0.87–5.40)
Readmission to ICU during same hospital admission, <i>n</i> (%)	5 (7)	9 (15)	9 (20)	0.78 (0.21–2.84)	2.32 (0.70–7.67)
Death in ICU, n (%)	19 (24)	12 (18)	11 (23)	1.55 (0.61-3.95)	1.28 (0.45-3.65)
Death in hospital, n (%)	28 (37)	21 (3)	17 (37)	1.66 (0.73-3.76)	0.94 (0.38-2.34)

Optimal assistance

Depressive disorders during weaning from prolonged mechanical ventilation

Intensive Care Med (2010) 36:828-835

Depressive disorders= 42%

Jubran et al. ICM 2010

Patients' prediction of extubation success

Perren A et al. ICM 2010

Sleep quality in mechanically ventilated patients: Comparison of three ventilatory modes

Cabello B et al. CCM 2008

Impact of sleep alterations on weaning duration in mechanically ventilated patients: a prospective study

Thille AW et al. ERJ 2018

Impact of sleep alterations on weaning duration in mechanically ventilated patients: a prospective study

Thille AW et al. ERJ 2018

Delirium and Circadian Rhythm of Melatonin During Weaning From Mechanical Ventilation An Ancillary Study of a Weaning Trial Mekontso Dessap *et al.* Chest 2015

	Mental Status at Initiation of Weaning ^a		
Outcome	Normal (n = 24)	Delirious (n = 43)	P Value
Time to first extubation, h			.086
Median (IQR)	27.5 (21.7-62.0)	49.7 (21.4-137.6)	
Mean (SD)	43.0 (29.6)	111.7 (176.6)	
Time to successful extubation, h			.086
Median (IQR)	27.4 (21.1-72.2)	51.0 (21.9-143.5)	
Mean (SD)	56.4 (59.3)	164.8 (255.3)	
Ventilator-free days from randomization to d 28			.044
Median (IQR)	26.6 (23.7-27.1)	23.1 (0.8-27.1)	
Mean (SD)	23.5 (7.6)	17.7 (11.5)	
Ventilator-free days from randomization to d 60			.027
Median (IQR)	58.6 (55.7-59.1)	54.4 (25.2-58.9)	
Mean (SD)	52.9 (16.4)	41.7 (23.8)	

Delirium and Circadian Rhythm of Melatonin During Weaning From Mechanical Ventilation An Ancillary Study of a Weaning Trial Mekontso Dessap *et al.* Chest 2015

Respiratory function			
Respiratory worsening requiring a return to assist-control ventilation	5 (20.8)	21 (48.8)	.024
Ventilator-associated pneumonia	2 (8.3)	13 (30.2)	.039
Ventilator-associated complication	1 (4.2)	11 (25.6)	.044
Need for noninvasive ventilation after extubation	11 of 23 (47.8)	16 of 38 (42.1)	.663
Reintubation within 72 h after extubation	3 of 23 (13.0)	6 of 38 (15.8)	>.99
Tracheostomy	1 (4.2)	5 (11.6)	.408
Cardiovascular function			
Need for fluid loading	7 (29.2)	23 (53.5)	.055
Need for catecholamine infusion	9 (37.5)	21 (48.8)	.371
Neurologic function			
Need for continuous sedation because of clinical worsening	2 (8.3)	30 (69.8)	<.001
Need for continuous analgesia because of clinical worsening	1 (4.2)	24 (55.8)	<.001

Effect of Protocolized Weaning With Early Extubation to Noninvasive Ventilation vs Invasive Weaning on Time to Liberation From Mechanical Ventilation Among Patients With Respiratory Failure The Breathe Randomized Clinical Trial

Perkins et al. 2018

JAMA | Original Investigation

Clinical challenges in mechanical ventilation

Ewan C Goligher, Niall D Ferguson, Laurent J Brochard

Lancet 2016

