# **VENTILATION DU SDRA**

Dr Q. BLANC Service de Réanimation Polyvalente

AER 24 NOVEMBRE 2017







• Pas de conflit d'intérêt

Définition

• VENTILATION INVASIVE : réglage du respirateur

Autres thérapeutiques

Place de la VNI

#### ACUTE RESPIRATORY DISTRESS IN ADULTS

DAVID G. ASHBAUGH M.D. Ohio State

ASSISTANT PROFESSOR OF SURGERY

The Lancet . Saturday 12 August 1967 ETY-NATIONAL NARY DISEASE

CAN THORACIC SOCIETY-NATIONAL TUBERCULOSIS ASSOCIATION FELLOW IN PULMONARY DISEASE\*

From the Departments of Surgery and Medicine, University of Colorado Medical Center, Denver, Colorado, U.S.A.

#### An Expanded Definition of the Adult Respiratory Distress Syndrome<sup>1</sup>

JOHN F. MURRAY, MICHAEL A. MATTHAY, JOHN M. LUCE, and MICHAEL R. FLICK



RECOMMENDED CRITERIA FOR ACUTE LUNG INJURY (ALI) AND

ACUTE BESPIRATORY DISTRESS SYNDROME (ARDS)

#### The American-European Consensus Conference on ARDS

Definitions, Mechanisms, Relevant Outcomes, and Clinical Trial Coordination

GORDON R. BERNARD, ANTONIO ARTIGAS, KENNETH L. BRIGHAM, JEAN CARLET, KONRAD FALKE, LEONARD HUDSON, MAURICE LAMY, JEAN ROGER LEGALL, ALAN MORRIS, ROGER SPRAGG, and the Consensus Committee

Am J Respir Crit Care Med 1994;149:818-24. Pulmonary Artery Oxygenation Chest Radiograph Wedge Pressure Pa<sub>O₂</sub>/Fi<sub>O₂</sub> ≤ 300 mm Hg Bilateral < 18 mm Hg when (regardless of infiltrates measured or no PEEP level) seen on frontal clinical evidence chest radiograph of left atrial hypertension Pa<sub>O<sub>2</sub></sub>/F<sub>IO<sub>3</sub></sub> ≤ 200 mm Hg Bilateral < 18 mm Hg when (regardless of infiltrates measured or no PEEP level) clinical evidence seen on frontal chest radiograph of left atrial hypertension

## ACUTE RESPIRATORY DISTRESS IN ADULTS

DAVID G. ASHBAUGH M.D. Ohio State

ASSISTANT PROFESSOR OF SURGERY

D. BOYD BIGELOW

The Lancet. Saturday 12 August 1967

Bernard E. Levine M.D. Michigan

AMERICAN THORACIC SOCIETY-NATIONAL TUBERCULOSIS ASSOCIATION FELLOW IN PULMONARY DISEASE\*

From the Departments of Surgery and Medicine, University of Colorado Medical Center, Denver, Colorado, U.S.A. Tachypnée Cyanose réfractaire Infiltrats diffus ↓ compliance pulmonaire



# Acute Respiratory Distress Syndrome

The Berlin Definition

JAMA, June 20, 2012-Vol 307, No. 23

| Temps                                               | Pas plus d'une semaine après la survenue d'un événement clinique (facteur de risque) ou de nouveaux symptômes ou d'une aggravation                                                                                                                                                                 |  |  |  |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Radio de thorax <sup>1</sup>                        | Opacités bilatérales non expliquées entièrement par des épanchements, des nodules ou des atélectasies                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Origine de<br>l'œdème                               | <ul> <li>Insuffisance respiratoire non expliquée entièrement par une insuffisance cardiaque ou une<br/>surcharge hydrosodée</li> <li>Évaluation objective nécessaire (e.g., échocardiographie) en l'absence de facteur de risque pour<br/>exclure un œdème hydrostatique</li> </ul>                |  |  |  |  |  |  |  |
| Oxygénation :<br>PaO <sub>2</sub> /FiO <sub>2</sub> | <ul> <li>Léger: 200 mmHg &lt; PaO<sub>2</sub>/FiO<sub>2</sub> ≤ 300 mmHg avec PEP ou CPAP ≥ 5 cmH<sub>2</sub>O</li> <li>Modéré: 100 mmHg &lt; PaO<sub>2</sub>/FiO<sub>2</sub> ≤ 200 mmHg avec PEP ≥ 5 cm H<sub>2</sub>O</li> <li>Sévère: &lt; 100 mmHg avec PEP &gt; 5 cmH<sub>2</sub>O</li> </ul> |  |  |  |  |  |  |  |


| Agressions pulmonaires directes           | Agressions pulmonaires indirectes |
|-------------------------------------------|-----------------------------------|
| Pneumonies (40-50 %)                      | Sepsis extrapulmonaire (20-30 %)  |
| Inhalation de liquide gastrique (10-15 %) | Polytraumatisme (5-10 %)          |
| Contusion pulmonaire                      | Choc                              |
| Noyade                                    | Pancréatite aiguë                 |
| Embolie graisseuse ou amniotique          | Transfusion massive               |
| Inhalation de fumées                      | Brûlures étendues                 |
| Intoxications médicamenteuses             | Crush syndrome                    |

# SDRA: particularités

Concept du Baby lung

L.Gattinoni ICM 2016

Hétérogénéité des lésions



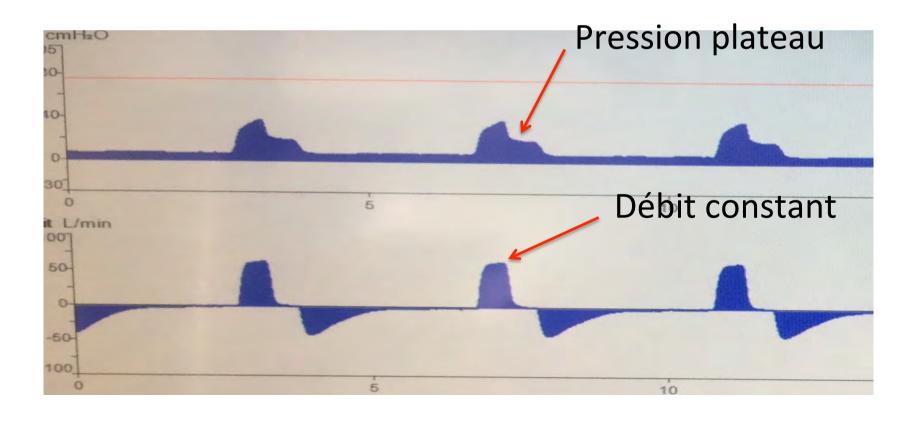
- Compliance basse
- Shunt pulmonaire d'ou hypoxémie

# But de la ventilation du SDRA

Corriger l'hypoxémie

 Ne pas aggraver les lésions : ventilation PROTECTRICE

> Ventilator-induced Lung Injury Lessons from Experimental Studies


DIDIER DREYFUSS and GEORGES SAUMON

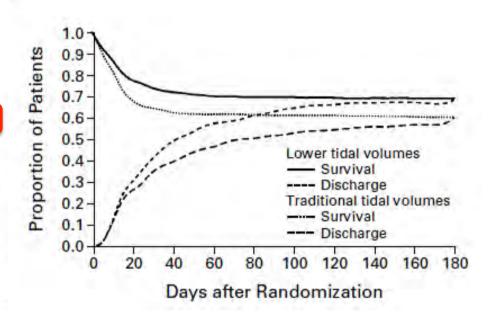


Am J Respir Crit Care Med Vol 157. pp 294-323, 1998

# MODE VENTILATOIRE: VAC

- DEBIT CONSTANT (rectangulaire): 40-60 l/min
- Pause téléinspiratoire de 0,2-0,3 s (mesure de la Pplat)




## REGLAGE DU VT

VENTILATION WITH LOWER TIDAL VOLUMES AS COMPARED WITH TRADITIONAL TIDAL VOLUMES FOR ACUTE LUNG INJURY AND THE ACUTE RESPIRATORY DISTRESS SYNDROME

**NEJM 2000** 

THE ACUTE RESPIRATORY DISTRESS SYNDROME NETWORK\*

| Variable                                                                          | GROUP<br>RECEIVING<br>LOWER TIDAL<br>VOLUMES | GROUP<br>RECEIVING<br>TRADITIONAL<br>TIDAL VOLUMES | P VALUE |
|-----------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------|
| Death before discharge home<br>and breathing without<br>assistance (%)            | 31.0                                         | 39.8                                               | 0.007   |
| Breathing without assistance<br>by day 28 (%)                                     | 65.7                                         | 55.0                                               | < 0.001 |
| No. of ventilator-free days,<br>days I to 28                                      | 12±11                                        | $10\pm11$                                          | 0.007   |
| Barotrauma, days 1 to 28 (%)                                                      | 10                                           | 11                                                 | 0.43    |
| No. of days without failure<br>of nonpulmonary organs<br>or systems, days 1 to 28 | 15±11                                        | 12±11                                              | 0.006   |



Vt 6 ml/kg et Pplat < 30 cmH2O

Tables donnant les valeurs d'un volume courant (VT) de 6 ml/kg en fonction du poids idéal théorique

| Taille (cm)<br>VT (ml) homme | 149<br>281 | 150<br>287 | 151<br>292 | 152<br>298 | 153<br>303 | 154<br>309 | 155<br>314 | 156<br>320 | 157<br>325 | 158<br>331 | 159<br>336 | 160<br>341 | 161<br>347 | 162<br>352 | 163<br>358 | 164<br>363 | 165<br>369 | 166<br>374 | 167<br>380 | 168<br>385 | 169<br>391 |
|------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| VT (ml) femme                | 254        | 260        | 265        | 271        | 276        | 282        | 287        | 293        | 298        | 304        | 309        | 314        | 320        | 325        | 331        | 336        | 342        | 347        | 353        | 358        | 364        |
|                              |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Taille (cm)                  | 170        | 171        | 172        | 173        | 174        | 175        | 176        | 177        | 178        | 179        | 180        | 181        | 18         | 2 18       | 83 1       | 84         | 185        | 186        | 187        | 188        | 189        |
| VT (ml) homme                | 396        | 402        | 407        | 412        | 418        | 423        | 429        | 434        | 440        | 445        | 451        | 456        | 46         | 2 40       | 67 4       | 173        | 478        | 483        | 489        | 494        | 500        |
| VT (ml) femme                | 369        | 375        | 380        | 385        | 391        | 396        | 402        | 407        | 413        | 418        | 424        | 429        | 43         | 5 44       | 40 4       | 146        | 451        | 456        | 462        | 467        | 473        |
|                              |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Taille (cm)                  | 190        | 191        | 192        | 193        | 194        | 195        | 196        | 197        | 198        | 199        | 200        | 201        | 20         | 2 20       | 03 2       | 204        | 205        | 206        | 207        | 208        | 209        |
| VT (ml) homme                | 505        | 511        | 516        | 522        | 527        | 533        | 538        | 544        | 549        | 554        | 560        | 565        | 5 57       | 1 5        | 76 5       | 582        | 587        | 593        | 598        | 604        | 609        |
| VT (ml) femme                | 478        | 484        | 489        | 495        | 500        | 506        | 511        | 517        | 522        | 527        | 533        | 538        | 54         | 4 54       | 49 5       | 555        | 560        | 566        | 571        | 577        | 582        |

Formule: Poids (kg) = X + 0.91 (taille en cm - 152.4) X = 50 pour les hommes, 45.5 pour les femmes

An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome

Am J Respir Crit Care Med Vol 195, lss 9, pp 1253-1263, May 1, 2017

## Question 1: Should Patients with ARDS Receive Mechanical Ventilation Using LTVs and Inspiratory Pressures?

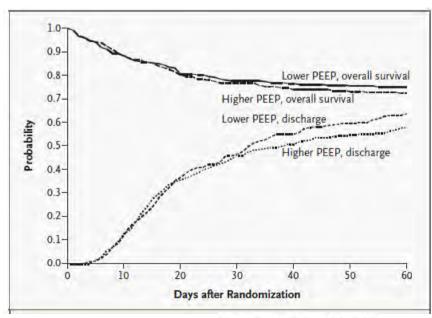
Recommendation. We recommend that adult patients with ARDS receive mechanical ventilation with strategies that limit tidal volumes (4–8 ml/kg PBW) and inspiratory pressures (plateau pressure < 30 cm H<sub>2</sub>O) (strong recommendation, moderate confidence in effect estimates).

## REGLAGE DE LA PEP

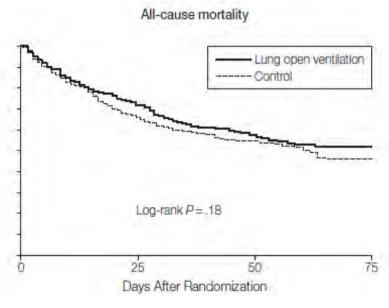
#### **BENEFICES**

#### **INCONVENIENTS**

Amélioration oxygénation : Baisse du DC :
- Recrutement alvéolaire - Diminution shunt - Diminution précharge VD/VG


Attenue les lésions induites par la ventilation (VILI) - Augmentation de l'espace mort alvéolaire

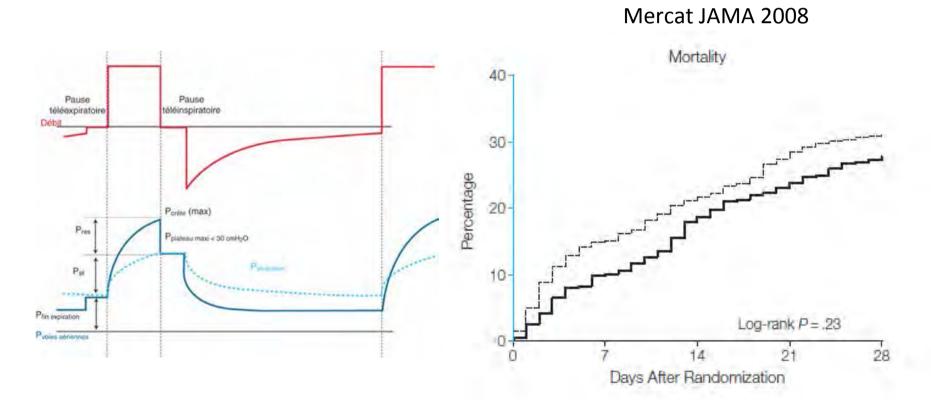
**Aggravation VILI** 


# REGLAGE DE LA PEP : quelle technique?

# • Table PEP/FIO2:

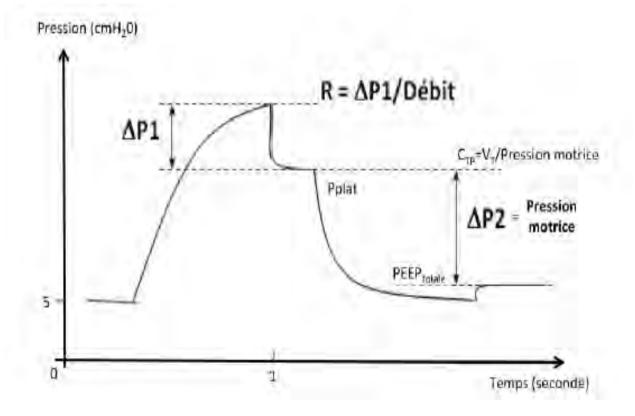
| FIO <sub>2</sub> | 0.3 - 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | 0.7 | 0.7 | 0.7 | 0.8 | 0.9 | 0.9 | 1     |
|------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| PEEP             | - 5       | 8   | 8   | 10  | 10  | 10  | 12  | 14  | 14  | 16  | 18  | 18-25 |




Brower et al N Engl J Med 2004;



Meade JAMA 2008


# REGLAGE DE LA PEP: quelle technique?

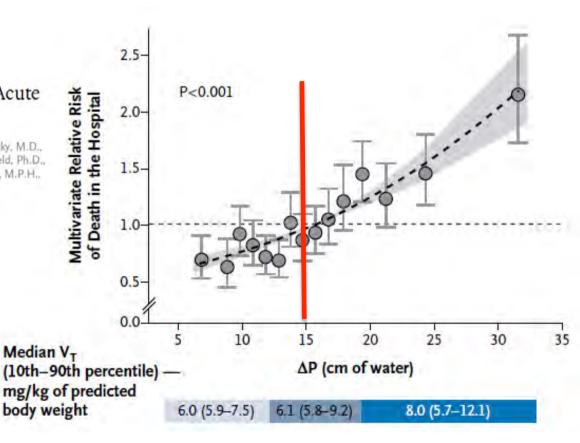
- Table PEP/FIO2
- PEP pour Pplat < 30 cmH2O :</li>



# REGLAGE DE LA PEP: quelle technique?

- Table PEP/FIO2
- PEP pour Pplat < 30 cmH2O</li>
- Pression motrice:




# REGLAGE DE LA PEP : quelle technique?

- Table PEP/FIO2
- PEP pour Pplat < 30 cmH2O</li>
- Pression motrice < 15 cmH2O :</li>

#### Driving Pressure and Survival in the Acute Respiratory Distress Syndrome

Marcelo B.P. Amato, M.D., Maureen O. Meade, M.D., Arthur S. Slutsky, M.D., Laurent Brochard, M.D., Eduardo L.V. Costa, M.D., David A. Schoenfeld, Ph.D., Thomas E. Stewart, M.D., Matthias Briel, M.D., Daniel Talmor, M.D., M.P.H., Alain Mercat, M.D., Jean-Christophe M. Richard, M.D., Carlos R.R. Caryalho, M.D., and Roy G. Brower, M.D.

N Engl J Med 2015



An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome

Am J Respir Crit Care Med Vol 195, lss 9, pp 1253-1263, May 1, 2017

# Question 4: Should Patients with ARDS Receive Higher, as Compared with Lower, PEEP?

Recommendation. We suggest that adult patients with moderate or severe ARDS receive higher rather than lower levels of PEEP (conditional recommendation, moderate confidence in effect estimates).

## REGLAGE DE LA FR

- FR entre 20-35/ min
- Pour obtenir une PaCO2 permettant d'avoir un pH >7,3



HYPERCAPNIE PERMISSIVE



- autoPEEP
- Défaillance VD
- HIC

# REGLAGE DE LA FIO2

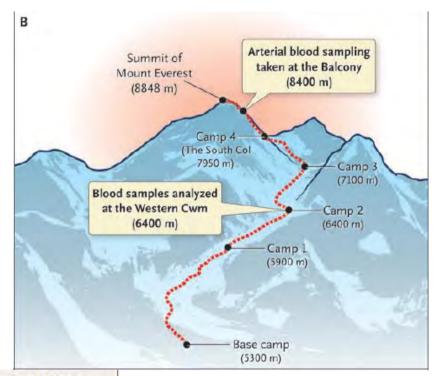
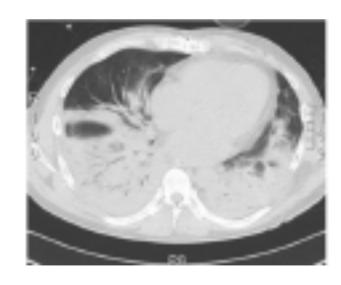
 Toxicité de l'O2? : aucune étude clinique dans le SDRA

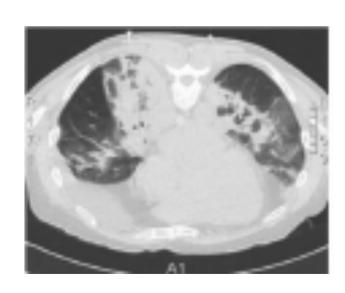
FIO2 pour: 55 < PaO2 < 80 mmHg 88 < Spo2 < 95%

#### ORIGINAL ARTICLE

#### Arterial Blood Gases and Oxygen Content in Climbers on Mount Everest

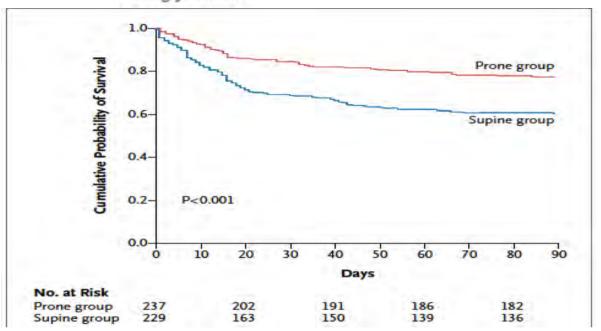
Michael P.W. Grocott, M.B., B.S., Daniel S. Martin, M.B., Ch.B., Denny Z.H. Levett, B.M., B.Ch., Roger McMorrow, M.B., B.Ch., Jeremy Windsor, M.B., Ch.B., and Hugh E. Montgomery, M.B., B.S., M.D., for the Caudwell Xtreme Everest Research Group\*



Table 2. Arterial Blood Gas Measurements and Calculated Values for Pulmonary Gas Exchange from Four Subjects at an Altitude of 8400 m, during Descent from the Summit of Mount Everest.\*

| Variable                                     |      | Subject | t No. |       | Group Mean |
|----------------------------------------------|------|---------|-------|-------|------------|
|                                              | 1    | 2       | 3     | 4     |            |
| pH                                           | 7.55 | 7.45    | 7.52  | 7.60  | 7.53       |
| PaO₂ (mm Hg)†                                | 29.5 | 19.1    | 21.0  | 28.7  | 24.6       |
| PaCO <sub>2</sub> (mm Hg)†                   | 12.3 | 15.7    | 15.0  | 10.3  | 13.3       |
| Bicarbonate (mmol/liter)‡                    | 10.5 | 10.67   | 11.97 | 9.87  | 10.8       |
| Base excess of blood‡                        | -6.3 | -9.16   | -6.39 | -5.71 | -6.9       |
| Lactate concentration (mmol/liter)           | 2.0  | 2.0     | 2.9   | 1.8   | 2.2        |
| SaO <sub>2</sub> (%)‡                        | 68.1 | 34.4    | 43.7  | 69.7  | 54.0       |
| Hemoglobin (g/dl)§                           | 20.2 | 18.7    | 18.8  | 19.4  | 19.3       |
| Respiratory exchange ratio¶                  | 0.81 | 0.74    | 0.72  | 0.70  | 0.74       |
| PAO <sub>2</sub> — mm Hg†**                  | 32.4 | 26.9    | 27.4  | 33.2  | 30.0       |
| Alveolar-arterial oxygen difference — mm Hg† | 2.89 | 7.81    | 6.44  | 4.51  | 5.41       |

# **DECUBITUS VENTRAL**


- Améliore l'oxygénation : du shunt pulmonaire
   Prévention VILI : masse poumon non aéré
- Prévention défaillance VD





#### Prone Positioning in Severe Acute Respiratory Distress Syndrome

Claude Guérín, M.D., Ph.D., Jean Reignier, M.D., Ph.D., N Engl J Med 2013.



- DV précoce
- Durée séance 16 h
- Arrêt si:
  - P/F> 150 4h après remise en DD
  - Complications DV
  - Diminution P/F en DV

Mortalité 16 vs 32%

An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome

Am J Respir Crit Care Med Vol 195, lss 9, pp 1253-1263, May 1, 2017

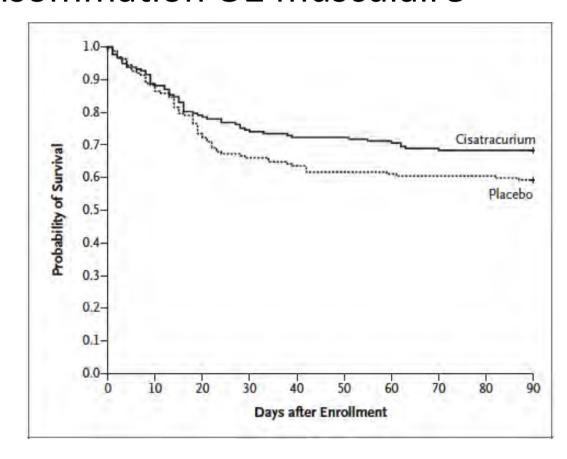
Question 2: Should Patients with ARDS Receive Prone Positioning?

Recommendation. We recommend that adult patients with severe ARDS receive prone positioning for more than 12 hours per day (strong recommendation, moderate-high confidence in effect estimates).

## MANŒUVRES DE RECRUTEMENT

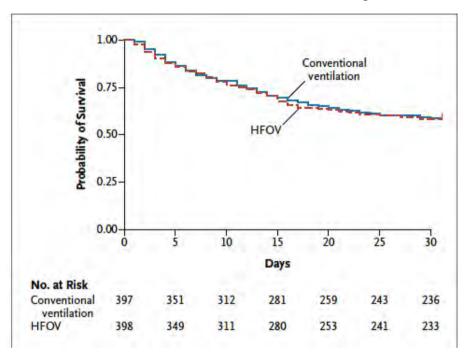
- Elévation transitoire de la pression
- But : « ouvrir » alvéoles collabées
- Techniques multiples, non standardisées
- Effets à court terme : oxygénation, compliance
- Risques hémodynamiques, barotraumatiques

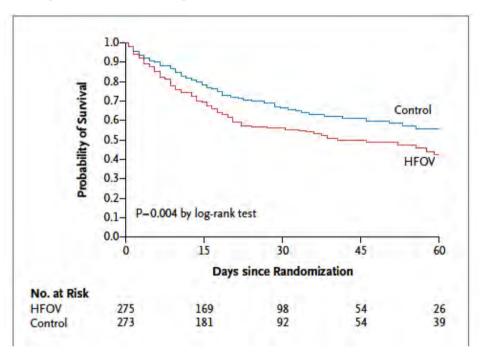
An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome


Am J Respir Crit Care Med Vol 195, lss 9, pp 1253-1263, May 1, 2017

# Question 5: Should Patients with ARDS Receive RMs?

Recommendation. We suggest that adult patients with ARDS receive RMs (conditional recommendation, low-moderate confidence in the effect estimates).


# **CURARES**


- Limitation des asynchronies
- Réduction consommation O2 musculaire



Papazian, NEJM 2010

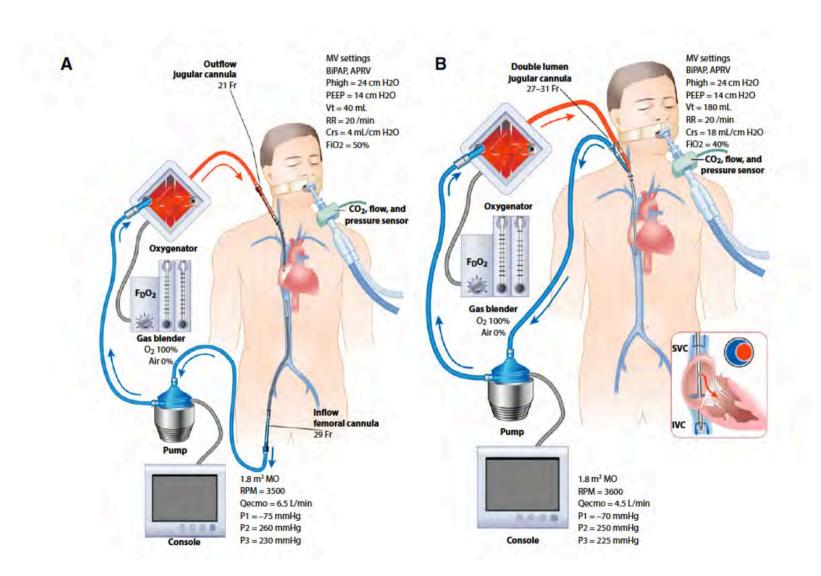
# Ventilation par Oscillation Haute fréquence (HFOV)





**Etude OSCAR NEJM 2013** 

**Etude OSCILLATE NEJM 2013** 


An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome

Am J Respir Crit Care Med Vol 195, lss 9, pp 1253-1263, May 1, 2017

# Question 3: Should Patients with ARDS Receive High-Frequency Oscillatory Ventilation?

Recommendation. We recommend that HFOV not be used routinely in patients with moderate or severe ARDS (strong recommendation, moderate-high confidence in effect estimates).

# **ECMO**



An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome

Am J Respir Crit Care Med Vol 195, Iss 9, pp 1253-1263, May 1, 2017

## Question 6: Should Patients with ARDS Receive Extracorporeal Membrane Oxygenation?

Recommendation. Additional evidence is necessary to make a definitive recommendation for or against the use of ECMO in patients with severe ARDS. In the interim, we recommend ongoing research measuring clinical outcomes among patients with severe ARDS who undergo ECMO.

# NO



- Diminue le shunt pulmonaire
- Augmentation PaO2
- Toxicité : Met Hb, NO2
- Insuffisance rénale

Thérapeutique de sauvetage Indication d'ECMO?



# Place de la VNI

- Avantages potentiels :
  - Prévention dysfonction diaphragmatique
  - Diminution de la sédation, des complications liées à l'intubation (PAVM...)
- Inconvénients:
  - Travail respiratoire excessif
  - Pas de contrôle du Vt (VILI)
  - Asynchronie, Intolérance
  - Intubation retardée
  - Non invasif??

### **ORIGINAL ARTICLE**

#### Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome

Insights from the LUNG SAFE Study

Giacomo Bellani<sup>1,2</sup>, John G. Laffey<sup>3,4,5,6,7,8</sup>, Tài Pham<sup>9,10,11</sup>, Fabiana Madotto<sup>12</sup>, Eddy Fan<sup>8,13,14,15</sup>, Laurent Brochard<sup>4,5,8,14</sup>, Andres Esteban<sup>16</sup>, Luciano Gattinoni<sup>17</sup>, Vesna Bumbasirevic<sup>18,19</sup>, Lise Piquilloud<sup>20,21</sup>, Frank van Haren<sup>22,23</sup>, Anders Larsson<sup>24</sup>, Daniel F. McAuley<sup>25,26</sup>, Philippe R. Bauer<sup>27</sup>, Yaseen M. Arabi<sup>28,29</sup>, Marco Ranieri<sup>30</sup>, Massimo Antonelli<sup>31</sup>, Gordon D. Rubenfeld<sup>8,14,32</sup>, B. Taylor Thompson<sup>33</sup>, Hermann Wrigge<sup>34</sup>, Arthur S. Slutsky<sup>5,8,14</sup>, and Antonio Pesenti<sup>35,36</sup>; on behalf of the LUNG SAFE Investigators and the ESICM Trials Group\*

- 15% des SDRA sont pris en charge par VNI.
- Gravité du SDRA est associée à l'échec de la VNI (de 22% à 47% ).
- Mortalité plus élevée si échec de VNI (42,7 vs 10,6%)
- VNI associée à une mortalité plus élevée si P/F < 150

SDRA léger



LATA?

Réévaluer les patients (PaCO2, FR...)